ALTERNATIVE ALGEBRAIC MODELS 43

model itself, novelty is not granted. Instead, the main contribution of the model
is the establishment of a formal framework in which dependencies among in-
dex terms (induced by co-occurrence patterns inside documents) can be nicely
represented. :

The usage of index term dependencies to improve retrieval performance
continues to be a controversial issue. In fact, despite the introduction in the 1980s
of more effective algorithms for incorporating term dependencies (see Chapter 5),
there is no consensus that incorporation of term dependencies in the model
yields effective improvement with general collections. Thus, it is not clear that
the framework of the generalized vector model provides a clear advantage in
practical situations. Further, the generalized vector model is more complex and
computationally more expensive than the classic vector model.

To determine the index term vector Ei associated with the index term k;,
we simply sum up the vectors for all minterms m, in which the term k; is in
state 1 and normalize. Thus,

T T »mzc’iy Th
Foo Zrnsdmgsi G T (2.5)

) c
vr, gi(me)=1 %ir
CGir = E Wi, j

d; | gi(d;)=gi(m,) for all I

These equations provide a general definition for the index term vector k; in
terms of the m, vectors. The term vector El- collects all the 773, vectors in which
the index term k; is in state 1. For each 7, vector, a correlation factor ¢;r is
defined. Such a correlation factor sums up the weights w; ; associated with the
index term k; and each document d; whose term occurrence pattern coincides
exactly with that of the minterm m,. Thus, a minterm is of interest (in which
case it is said to be active) only if there is at least one document in the collection
which matches its term occurrence pattern. This implies that no more than N
minterms can be active, where N is the number of documents in the collection.
Therefore, the ranking computation does not depend on an exponential number
of minterms as equation 2.5 seems to suggest.

Notice that the internal product k; e k; can now be used to quantify a
degree of correlation between the index terms k; and k;. For instance,

ki ® k_] = E Cir X Cjr

vr | gi(my)=1 A gj(m-)=1

which, as later discussed in Chapter 5, is a good techniqu@for quantifying index
term correlations. ’

In the classic vector model, a document d; and a user query g are expressed
by d_; =D i Wij kiand § = Yy, Wiy k;, respectively. In the generalized vector
space model, these representations can be directly translated to the space of
minterm vectors 1, by applying equation 2.5. The resultant d; and q vectors

44 MODELING

are then used for computing the ranking through a standard cosine similarity
function.

The ranking that results from the generalized vector space model com-
bines the standard w; ; term-document weights with the correlation factors c; ,..
However, since the usage of term-term correlations does not necessarily yield im-
proved retrieval performance, it is not clear in which situations the generalized
model outperforms the classic vector model. Furthermore, the cost of comput-
ing the ranking in the generalized model can be fairly high with large collections
because, in this case, the number of active minterms (i.e., those which have to be
considered for computing the E,- vectors) might be proportional to the number
of documents in the collection. Despite these drawbacks, the generalized vector
model does introduce new ideas which are of importance from a theoretical point
of view.

2.7.2 Latent Semantic Indexing Model

As discussed earlier, summarizing the contents of documents and queries through
a set of index terms can lead to poor retrieval performance due to two effects.
First, many unrelated documents might be included in the answer set. Second,
relevant documents which are not indexed by any of the query keywords are
not retrieved. The main reason for these two effects is the inherent vagueness
associated with a retrieval process which is based on keyword sets.

The ideas in a text are more related to the concepts described in it than
to the index terms used in its description. Thus, the process of matching doc-
uments to a given query could be based on concept matching instead of index
term matching. This would allow the retrieval of documents even when they
are not indexed by query index terms. For instance, a document could be re-
trieved because it shares concepts with another document which is relevant to
the given query. Latent semantic indexing is an approach introduced in 1988
which addresses these issues (for clustering-based approaches which also address
these issues, see Chapter-5).

The main idea in the latent sementic indezing model [287] is to map each
document and query vector into a lower dimensional space which is associated
with concepts. This is accomplished by mapping the index term vectors into this
lower dimensional space. The claim is that retrieval in the reduced space may
be superior to retrieval in the space of index terms. Before proceeding, let us
define basic terminology.

Definition As before, let t be the number of indez terms in the collection and
N be the total number of documents. Define M =(M;;) as a term-document
association matriz with t rows and N columns. To each element M;; of this
matriz is assigned a weight w; ; associated with the term-document pair [k;, d;).
This w; j weight could be generated using the tf-idf weighting technique common
in the classic vector space model.

ALTERNATIVE ALGEBRAIC MODELS 45

Latent semantic indexing proposes to decompose the M association matrix in
three components using singular value decomposition as follows.

M = KSD!

The matrix K is the matrix of eigenvectors derived from the term-to-term cor-
relation matrix given by MM? (see Chapter 5). The matrix D! is the matrix
of eigenvectors, derived from the transpose of the document-to-document matrix
given by M'M. The matrix S is an r x r diagonal matrix of singular values
where r = min(t, N) is the rank of M.

Consider now that only the s largest singular values of S are kept along with
their corresponding columns in K and Dt (i.e., the remaining singular values of
S are deleted). The resultant M, matrix is the matrix of rank s which is closest
to the original matrix M in the least square sense. This matrix is given by

M, = K,S,Dt

where s, s < r, is the dimensionality of a reduced concept space. The selection
of a value for s attempts to balance two opposing effects. First, s should be large
enough to allow fitting all the structure in the real data. Second, s should be
small enough to allow filtering out all the non-relevant representational details
(which are present in the conventional index-term based representation).

The relationship between any two documents in the reduced space of di-
mensionality s can be obtained from the]l?(ﬁ]ﬁs matrix given by

-

‘M, = (K,S,DY'K,S,D:

=i

S,K!K,S,D:
= D,S,S.D

D,S)(DsS,)t

i
-

s

[P sy

I

In the above matrix, the (i,) element quantifies the relationship between doc-
uments d; and d;.

To rank documents with regard to a given user query, we simply model the
query as a pseudo-document in the original M term-document matrix. Assume
the query is modeled as the document with number 0. Then, the first row in the
matrix M st provides the ranks of all documents with respect to this query.

Since the matrices used in the latent semantic indexing model are of rank s,
s << t, and s << N, they form an efficient indexing scheme for the documents
in the collection. Further. they provide for elimination of noise (present in index
term-based representations) and removal of redundancy.

The latent semantic indexing model introduces an interesting conceptual-
ization of the information retrieval problem based on the theory of singular value
decomposition. Thus, it has its value as a new theoretical framework. Whether it
is superior in practical situations wjth general collections remains to be verified.

46 MODELING

Query Document Documents
Terms Terms

Figure 2.7 A neural network model for information retrieval.

2.7.3 Neural Network Model

In an information retrieval system, document vectors are compared with query
vectors for the computation of a ranking. Thus, index terms in documents
and queries have to be matched and weighted for computing this ranking. Since
neural networks are known to be good pattern matchers, it is natural to consider
their usage as an alternative model for information retrieval.

It is now well established that our brain is composed of billions of neurons.
Each neuron can be viewed as a basic processing unit which, when stimulated
by input signals, might emit output signals as a reactive action. The signals
emitted by a neuron are fed into other neurons (through synaptic connections)
which can themselves emit new output signals. This process might repeat itself
through several layers of neurons and is usually referred to as a spread activation
process. As a result, input information is processed (i.e., analyzed and inter-
preted) which might lead the brain to command physical reactions (e.g., motor
actions) in response.

A neural network is an oversimplified graph representation of the mesh
of interconnected neurons in a human brain. The nodes in this graph are the
processing units while the edges play the role of the synaptic connections. To
simulate the fact that the strength of a synaptic connection in the human brain
changes over time, a weight is assigned to each edge of our neural network. At
each instant, the state of a node is defined by its activation level (which is a
function of its initial state and of the signals it receives as input). Depending
on its activation level, a node A might send a signal to a neighbor node B. The
strength of this signal at the node B depends on the weight associated with the
edge between the nodes A and B.

A neural network for information retrieval can be defined as illustrated
in Figure 2.7. The model depicted here is based on the work in [815]. We first

ALTERNATIVE ALGEBRAIC MODELS 47

observe that the neural network in Figure 2.7 is composed of three layers: one for
the query terms, one for the document terms, and a third one for the documents
themselves. Observe the similarity between the topology of this neural network
and the topology of the inference and belief networks depicted in Figures 2.9
and 2.10. Here, however, the query term nodes are the ones which initiate the
inference process by sending signals to the document term nodes. Following that,
the document term nodes might themselves generate signals to the document
nodes. This completes a first phase in which a signal travels from the query
term nodes to the document nodes (i.e., from the left to the right in Figure 2.7).

The neural network, however, does not stop after the first phase of sig-
nal propagation. In fact, the document nodes in their turn might generate new
signals which are directed back to the document term nodes (this is the reason
for the bidirectional edges between document term nodes and document nodes).
Upon receiving this stimulus, the document term nodes might again fire new
signals directed to the document nodes, repeating the process. The signals be-
come weaker at each iteration and the spread activation process eventually halts.
This process might activate a document d; even when such a document does not
contain any query terms. Thus, the whole process can be interpreted as the
activation of a built-in thesaurus.

To the query term nodes is assigned an initial (and fixed) activation level
equal to 1 (the maximum). The query term nodes then send signals to the
document term nodes which are attenuated by normalized query term weights
W;q. For a vector-based ranking, these normalized weights can be derived from
the weights w; 4 defined for the vector model by equation 2.4. For instance,

Wi,q

Wi,q = 7 >
dim1 Wiq

where the normalization is done using the norm of the query vector.

Once the signals reach the document term nodes, these might send new
signals out directed towards the document nodes. These signals are attenuated
by normalized document term weights @; ; derived from the weights w; ; defined
for the vector model by equation 2.3. For instance,

Wi, j

wi‘j = ——t— —2
2 im1 wy
where the normalization is done using the norm of the document vector.
The signals which reach a document node are summed up. Thus, after
the first round of signal propagation, the activation level of the document node
associated to the document d; is given by

t t

— Dzl Wig Wi

Wi,q Wij = ; ; 5
¢ 2.
Vi wlox /Sy v,

48 MODELING

which is exactly the ranking provided by the classic vector model.

To improve the retrieval performance, the network continues with the
spreading activation process after the first round of propagation. This modi-
fies the initial vector ranking in a process analogous to a user relevance feedback
cycle (see Chapter 5). To make the process more effective, a minimum activation
threshold might be defined such that document nodes below this threshold send
no signals out. Details can be found in [815].

There is no conclusive evidence that a neural network provides superior
retrieval performance with general collections. In fact, the model has not been
tested extensively with large document collections. However, a neural network
does present an alternative modeling paradigm. Further, it naturally allows
retrieving documents which are not initially related to the query terms — an
appealing functionality.

2.8 Alternative Probabilistic Models

One alternative which has always been considered naturally appealing for quanti-
fying document relevance is the usage of probability theory and its main streams.
One such stream which is gaining increased attention concerns the Bayesian be-
lief networks which we now discuss.

Bayesian (belief) networks are useful because they provide a clean formal-
ism for combining distinct sources of evidence (past queries, past feedback cycles,
and distinct query formulations) in support of the rank for a given document.
This combination of distinct evidential sources can be used to improve retrieval
performance (i.e., to improve the ‘quality’ of the ranked list of retrieved docu-
ments) as has been demonstrated in the work of Turtle and Croft [771].

In this chapter we discuss two models for information retrieval based on
Bayesian networks. The first model is called inference network and provides
the theoretical basis for the retrieval engine in the Inquery system [122]. Its
success has attracted attention to the use of Bayesian networks with information
retrieval systems. The second model is called belief network and generalizes the
first model. At the end, we briefly compare the two models.

Our discussion below uses a style which is quite distinct from that em-
ployed by Turtle and Croft in their original writings. Particularly, we pay more
attention to probabilistic argumentation during the development of the model.
We make a conscious effort of consistently going back to the Bayesian formalism
for motivating the major design decisions. It is our view that such an explana-
tion strategy allows for a more precise argumentation which facilitates the task
of grasping the subtleties involved.

Before proceeding, we briefly introduce Bayesian networks.

2.8.1 Bayesian Networks

Bayesian networks [630] are directed acyclic graphs (DAGs) in which the nodes
represent random variables, the arcs portray causal relationships between these

ALTERNATIVE PROBABILISTIC MODELS 49

variables, and the strengths of these causal influences are expressed by condi-
tional probabilities. The parents of a node (which is then considered as a child
node) are those judged to be direct causes for it. This causal relationship is
represented in the DAG by a link directed from each parent node to the child
node. The roots of the network are the nodes without parents.

Let z; be a node in a Bayesian network G and Ty, be the set of parent
nodes of z;. The influence of T, on z; can be specified by any set of functions
Fi(z;,T'z,) that satisfy

ZFi(miarzl)

V&,
0 S Fl(xi,l“x,) S 1

I
-

where z; also refers to the states of the random variable associated to the node z;.
This specification is complete and consistent because the product [, Fi(z:,I',)
constitutes a joint probability distribution for the nodes in G.

TN
[x, j
//\/\
< TN
| xz) ‘:\xli)
NS ‘“‘\
D /;\)
xa) \\v5

Figure 2.8 An example of a Bayesian network.

Figure 2.8 illustrates a Bayesian network for a joint probability distribu-
tion P(xy,2,Z3,%4,s5). In this case, the dependencies declared in the network
allow the natural expression of the joint probability distribution in terms of local
conditional probabilities (a key advantage of Bayesian networks) as follows.

P(xy,T2,T3,T4,T5) = P(z1)P(zq|x1) P(z3]x1) P(z4|22, 3) P(25]23)

The probability P(z1) is called the prior probability for the network and can be
used to model previous knowledge about the semantics of the application.

2.8.2 Inference Network Model

The two most traditional schools of thought in probability are based on the
frequentist view and the epistemological view. The frequentist view takes prob-
ability as a statistical notion related to the laws of chance. The epistemological

50 MODELING

e //\.\ / —

\ o < |
C 2
N

Figure 2.9 Basic inference network model.

view interprets probability as a degree of belief whose specification might be de-
void of statistical experimentation. This second viewpoint is important because
we frequently refer to probabilities in our daily lives without a clear definition
of the statistical experiment which yielded those probabilities.

The inference network model [772, 771] takes an epistemological view of
the information retrieval problem. It associates random variables with the index
terms, the documents, and the user queries. A random variable associated with a
document d; represents the event of observing that document (i.e., the model as-
sumes that documents are being observed in the search for relevant documents).
The observation of the document d; asserts a belief upon the random variables
associated with its index terms. Thus, observation of a document is the cause
for an increased belief in the variables associated with its index terms.

Index term and document variables are represented as nodes in the network.
Edges are directed from a document node to its term nodes to indicate that
observation of the document yields improved belief on its term nodes.

The random variable associated with the user query models the event that
the information request specified by the query has been met. This random
variable is also represented by a node in the network. The belief in this (query)
node is a function of the beliefs in the nodes associated with the query terms.
Thus, edges are directed from the index term nodes to the query node. Figure 2.9
illustrates an inference network for information retrieval. The document d;
has k, k;, and k; as its index terms. This is modeled by directing the edges from
the node d; to the nodes ks, ki, and k;. The query q is composed of the index
terms k,, k2, and k;. This is modeled by directing the edges from the nodes k1,
k2, and k; to the node ¢. Notice that F igure 2.9 also includes three extra nodes:
92, q1, and I. The nodes g, and ¢; are used to model an (alternative) Boolean
formulation ¢, for the query g (in this case, g1 = (k; A k) Vv k;). When such

ALTERNATIVE PROBABILISTIC MODELS 51

(additional) information is available, the user information need I is supported
by both ¢ and ¢;.

In what follows, we concentrate our attention on the support provided to
the query node ¢ by the observation of a document d;. Later on, we discuss the
impact of considering multiple query representations for an information need 1.
This is important because, as Turtle and Croft have demonstrated, a keyword-
based query formulation (such as ¢) can be combined with a Boolean-like query
formulation (such as ¢;) to yield improved retrieval performance for the same
information need.

The complete inference network model also includes text nodes and query .
concept nodes but the model discussed above summarizes the essence of the
approach.

A simplifying assumption is made which states that all random variables in
the network are binary. This seems arbitrary but it does simplify the modeling
task and is general enough to capture all the important relationships in the
information retrieval problem.

Definition Let k be a t-dimensional vector defined by k = (k1, kg, .. k)
where ki, ka, ..., ki are binary random variables i.e., k; € {0,1}. These variables
define the 2t possible states for k. Further, let d; be a binary random variable
associated with a document d; and let q be a binary random variable associated
with the user query.

Notice that g is used to refer to the query, to the random variable associated with
it, and to the respective node in the network. This is also the case for d; and
for each index term k;. We allow this overloading in syntax because it should
always be clear whether we are referring to either the query or to its associated
random variable.

The ranking of a document d; with respect to a query ¢ is a measure of
how much evidential support the observation of d; provides to the query q. In
an inference network, the ranking of a document d; is computed as P(q A d;)
where ¢ and d; are short representations for ¢ = 1 and d; = 1, respectively. In
general, such a ranking is given by

Il

P(qAd;) > P(gndj;lk) x P(k)

vk
= Y P(gnd; AE)
vk

— 3" Pgld; x F) x P(d; x)
vk
= S P(qlk) x P(k|d;) x P(d;) (2.6)
vk
P(gnd;) = 1-Pgnd,)

52 MODELING

which is obtained by basic conditioning and the application of Bayes’ rule. Notice
that P(q|d; x k) = (qlk) because the k; nodes separate the query node g from
the document node d;. Also, the notation g A d; is a short representation for
—-(q A d])

The instantiation of a document node d; (i.e., the observation of the doc-
ument) separates its children index term nodes making them mutually indepen-
dent (see Bayesian theory for details). Thus, the degree of belief asserted to each
index term node k; by instantiating the document node d; can be computed sep-
arately. This implies that P(Eldj) can be computed in product form which yields
(from equation 2.6),

P(gnd;) =) P(qlk)x

II Pkild;) = H P(kild;) | x P(d;) (2.7)
Vilg: (k)=1 Vilg: (K)=0
P(gAd;) = 1-P(gnd;)

where P(k;|d;) = 1— P(k;|d;). Through proper specification of the probabilities
P(q|k), P(kild;), and P(d;), we can make the inference network cover a wide
range of useful information retrieval ranking strategies. Later on, we discuss how
to use an inference network to subsume the Boolean model and tf-idf ranking
schemes. Let us first cover the specification of the P(d;) probabilities.

Prior Probabilities for Inference Networks

Since the document nodes are the root nodes in an inference network, they receive
a prior probability distribution which is of our choosing. This prior probability
reflects the probability associated to the event of observing a given document
d; (to simplify matters, a single document node is observed at a time). Since
we have no prior preferences for any document in particular, we usually adopt
a prior probability distribution which is uniform. For instance, in the original
work on inference networks (772, 771], the probability of observing a document
d; is set to 1/N where N is the total number of documents in the system. Thus,

1
Pd;) = =
(.7) N
- 1
Pld;)) = 1-—=
(.7) N
The choice of the value 1/N for the prior probability P(d;) is a simple
and natural specification given that our collection is composed of N documents.
However, other specifications for P(d;) might also be interesting. For instance,
in the cosine formula of the vector model, the contribution of an index term to

ALTERNATIVE PROBABILISTIC MODELS 53

the rank of the document d; is inversely proportional to the norm of the vector
d;-. The larger the norm of the document vector, the smaller is the relative
contribution of its index terms to the document final rank. This effect can be
taken into account through proper specification of the prior probabilities P(d;)
as follows.

|~

P(d;) = 7]
P(dj) = 1-P(dj)

where |d;| stands for the norm of the vector d;. Therefore, in this case, the larger
the norm of a document vector, the smaller its associated prior probability. Such
specification reflects a prior knowledge that we have about the behavior of vector-
based ranking strategies (which normalize the ranking in the document space).
As commanded by Bayesian postulates, previous knowledge of the application
domain should be asserted in the specification of the priors in the network, as
we have just done.

Inference Network for the Boolean Model

Here we demonstrate how an inference network can be tuned to subsume the
Boolean model. First, for the Boolean model, the prior probabilities P(d;) are all
set to 1/N because the Boolean model makes no prior distinction on documents.
Thus,

P(d;) = 1-P(dj)

Regarding the conditional probabilities P(k;|d;) and P(q|E), the specification is
as follows.

Vs _ 1 if gi(dj) =1
P(kild;) = { 0 otherwise
P(kild;) = 1- P(kild;)

which basically states that, when the document d; is being observed, only the
nodes associated with the index terms of the document d; are active (i.e., have
an induced probability greater than 0). For instance, observation of a document
node d; whose term vector is composed of exactly the index terms ko, ki, and k;
(see Figure 2.9) activates the index term nodes {kz,k;,k:} and no others.

Once the beliefs in the index term nodes have been computed, we can use
them to compute the evidential support they provide to the user query g as

54 MODELING

follows.
oo 1A 3G | (Gee € Gang) A (Vres 9:(K) = 6i(Gec))
P(Q|k) - {0 otherwise
P(glk) = 1- P(qlk)

where .. and @3,s are as defined for the classic Boolean model. The above
equation basically states that one of the conjunctive components of the user
query (expressed in disjunctive normal form) must be matched by the set of
active terms in k (in this case, those activated by the document observed) exactly.

Substituting the above definitions for P(g|k), P(k;|d;), and P(d;) into
equation 2.7, it can be easily shown that the set of documents retrieved is exactly
the set of documents returned by the Boolean model as defined in section 2.5.2.
Thus, an inference network can be used to subsume the Boolean model without
difficulties.

Inference Network for tf-idf Ranking Strategies

For tf-idf ranking strategies (i.e., those related to the vector model), we adopt
prior probabilities which reflect our prior knowledge of the importance of docu-
ment normalization. Thus, we set the prior P(d;) to 1/|d;| as follows.

1
(dj) A (2.8)
P(d;) = 1-P(d;)

Further, we have to decide where to introduce the tf (term-frequency) and the
idf (inverse-document-frequency) factors in the network. For that purpose, we
consider that the tf and idf factors are normalized (as in equation 2.1) and that
these normalized factors are strictly smaller than 1.

We first focus on capturing the impact of the tf factors in the network.
Normalized tf factors are taken into account through the beliefs asserted upon
the index term nodes as follows.

P(kild;) = fi; (2.9)
P(kild;) = 1- P(ki|d;)

These equations simply state that, according to the observed document d;, the

relevance of a term k; is determined by its normalized term-frequency factor.
We are now in a position to consider the influence of idf factors. They are

taken into account through the specification of the impact of index term nodes

Srinfvas tnstitute of Technology
Aco. No.x..imléﬁﬁﬁ...m.mm

Cal NO tumer e evavennan ALTERNATIVE PROBABILISTIC MODELS 55

S
on the query node. Define a vector k; given by,

—

ki=k | (gi(k) =1 A Yz g;(K) =0)

The vector Ei is a reference to the state of the vector k in which the node k; is
active and all others are inactive. The motivation is that tf-idf ranking strategies
sum up the individual contributions of index terms and k; allows us to consider
the influence of the term k; in isolation. We are now ready to define the influence
of the index term nodes in the query node q as

S idf; if K=k A gi(q) =1
Plalk) = { it E£K V0@ =0 (2.10)

P@glk) = 1- P(qlk)

where idf; here is a normalized version of the idf factor defined in equation 2.2.
By applying equations 2.8, 2.9, and 2.10 to equation 2.7, we can then write

P(gAd;) = > Plglk) x P(kild,;) x | J[P&ild,) | x P(d))

vE; Y i
k = 1
= HP(ki‘dj) x P(d;) x ZP(k2|dj) x P(qlk;) X —e—
@ P{RId,)
1 . 1
= ijmx Z fi'jXdeixl—_‘T
I vilgi(d))=1Ag: (D=1 i
P(gAd;) = 1-Plgndy)

which provides a tf-idf-like ranking. Unfortunately, C; depends on a product
of the various probabilities P(k;|d;) which vary from document to document
and thus the ranking is distinct from the one provided by the vector model.
Despite this peculiarity in the tf-idf ranking generated, it has been shown that
an inference network is able to provide good retrieval performance with general
collections. The reason is that the network allows us to consistently combine
evidence from distinct evidential sources to improve the final ranking, as we now
discuss.

Combining Evidential Sources

In Figure 2.9, the first query node ¢ is the standard keyword-based query for-
mulation for the user information need I. The second query ¢; is a Boolean-like
query formulation for the same information need (i.e., an additional evidential
source collected from a specialist). The joint support these two query formu-
lations provide to the information need node I can be modeled through, for

56 MODELING

instance, an OR operator (i.e., I = qV ¢;). In this case, the ranking provided
by the inference network is computed as,

P(INd;) = Y P(I|k) x P(k|d;) x P(d;)
3
= Y (1 - P(glk) P(,]k)) x P(k|d;) x P(d))
3

which might yield a retrieval performance which surpasses the retrieval per-

formance obtained with each of the query nodes in isolation as demonstrated
in [771].

2.8.3 Belief Network Model

The belief network model, introduced in 1996 by Ribeiro-Neto and Muntz [674],
is also based on an epistemological interpretation of probabilities. However, it
departs from the inference network model by adopting a clearly defined sample
space. As a result, it yields a slightly different network topology which provides
a separation between the document and the query portions of the network. This
is the main difference between the two models and one which has theoretical
implications.

The Probability Space

The probability space adopted was first introduced by Wong and Yao [830] and
works as follows. All documents in the collection are indexed by index terms and
the universe of discourse U is the set K of all index terms.

Definition The set K = {ky,...,k;} is the universe of discourse and defines
the sample space for the belief network model. Let u C K be a subset of K. To
each subset u is associated o vector k such that g;(k) = 1 < k; € u.

The introduction of the vector k is useful to keep the notation compatible with
the one which has been used throughout this chapter.

Each index term is viewed as an elementary concept and K as a concept
space. A concept u is a subset of K and might represent a document in the
collection or a user query. In a belief network, set relationships are specified
using random variables as follows.

Definition To each index term k; is associated a binary random variable which
s also referred to as k;. The random variable k; is set to 1 to indicate that the
indez k; is a member of,a concept/set represented by k.

ALTERNATIVE PROBABILISTIC MODELS 57

This association of concepts with subsets is useful because it allows us to express
the logical notions of conjunction, disjunction, negation, and implication as the
more familiar set-theoretic notions of intersection, union, complementation, and
inclusion. Documents and user queries can be defined as concepts in the sample
space K as follows.

Definition A document d; in the collection s represented as a concept (i.e., a
set) composed of the terms which are used to index d;. Analogously, a user query
q 1s represented as a concept composed of the terms which are used to index q.

A probability distribution P is defined over K as follows. Let ¢ be a generic
concept in the space K representing a document or user query. Then,

P(c) = > P(clu) x P(u) (2.11)

Pu) = (%)t | (2.12)

Equation 2.11 defines P(c) as the degree of coverage of the space K by c. Such a

coverage is computed by contrasting each of the concepts in K with ¢ (through

P(c|u)) and by summing up the individual contributions. This sum is weighted

by the probability P(u) with which u occurs in K. Since at the beginning

the system has no knowledge of the probability with which a concept u occurs

in the space K, we can assume that each u is equally likely which results in
. equation 2.12.

Belief Network Model

In the belief network model, the user query ¢ is modeled as a network node to
which is associated a binary random variable (as in the inference network model)
which is also referred to as q. This variable is set to 1 whenever ¢ completely
covers the concept space K. Thus, when we assess P(q) we compute the degree of
coverage of the space K by ¢. This is equivalent to assessing the degree of belief
associated with the following proposition: Is it true that q completely covers all
possible concepts in K?

A document d; is modeled as a network node with which is associated a
binary random variable which is also referred to as d;. This variable is 1 to
indicate that d; completely covers the concept space K. When we assess P(d;),
we compute the degree of coverage of the space K by d;. This is equivalent to
assessing the degree of belief associated with the following proposition: Is it true
that d; completely covers all possible concepts in K7

According to the above formalism, the user query and the documents in
the collection are modeled as subsets of index terms. Each of these subsets is
interpreted as a concept embedded in the concept space K which works as a
common sample space. Furthermore, user queries and documents are modeled

58 MODELING

<
0’0 <>

Figure 2.10 Basic belief network model.

identically. This is an important observation because it defines the topology of
the belief network.

Figure 2.10 illustrates our belief network model. As in the inference network
model, a query ¢ is modeled as a binary random variable which is pointed to
by the index term nodes which compose the query concept. Documents are
treated analogously to user queries (i.e., both are concepts in the space K)
Thus, contrary to the inference network model, a document node is pointed to
by the index term nodes which compose the document. This is the topological
difference between the two models and one which has more implications than it
seems at first glance.

The ranking of a document d; relative to a given query ¢ is interpreted as
a concept matching relationship and reflects the degree of coverage provided to
the concept d; by the concept q.

Assumption In the belief network model, P(d;|q) is adopted as the rank of the
document d; with respect to the query gq.

By the application of Bayes’ theorem, we can write P(d;|q) = P(d; A q)/P(q).
Since P(q) is a constant for all documents in the collection, we can write P(d,|q)
~ P(d; A g) i.e., the rank assigned to a document d; is directly proportional to
P(d; A q). This last probability is computed through the application of equa-
tion 2.11 which yields

P(d;lg) ~ Y P(d; Aglu) x P(u)

Yu

In the belief network of Figure 2.10, instantiation of the index term variables
logically separates the nodes ¢ and d making them mutually independent (i.e.,
the document and query portions of the network are logically separated by in-

ALTERNATIVE PROBABILISTIC MODELS 59

stantiation of the index term nodes). Therefore,

P(djlg) ~) P(d;lu) x P(glu) x P(u)

Vu
which can be rewritten as

P(djlg) ~) P(d;lk) x P(qlk) x P(K) (2.13)
vi

To complete the belief network we need to specify the conditional probabil-
ities P(q|k) and P(d,|k). Distinct specifications of these probabilities allow the
modeling of different ranking strategies (corresponding to different IR models).
We now discuss how to specify these probabilities to subsume the vector model.

For the vector model, the probabilities P(g|k) and P(dj|E) are specified as
follows. Let,

—

ki=k | (g(k)=1A Vizi 95(k) = 0)

as before. Also,

. 1? ifk=k A gig)=1
P(q!k) = Zt‘:l w?vq
0 otherwise
P(glk) = 1- P(qlk)
Further, define
o u:-, le'—‘EI A gz((Z])Zl
P(d;lk) = PR
0 otherwise

P(djk) = 1-P(d,k)

Then, the ordering of the retrieved documents (i.e., the ranking) defined by
P(d;|q) coincides with the ordering generated by the vector model as specified
in section 2.5.3. Thus, the belief network model can be tuned to subsume the
vector model which cannot be accomplished with the inference network model.

2.8.4 Comparison of Bayesian Network Models

There is a close resemblance between the belief network model and the inference
network model. However. this resemblance hides important differences between
the two models. First, the belief network model is based on a set-theoretic view

60 MODELING

of the IR ranking problem and adopts a clearly defined sample space. The in-
ference network model takes a purely epistemological view of the IR problem
which is more difficult to grasp (because, for instance, the sample space is not
clearly defined). Second, the belief network model provides a separation be-
tween the document and the query portions of the network which facilitates the
modeling of additional evidential sources such as past queries and past relevance
information. Third, as a result of this document-query space separation, the
belief network model is able to reproduce any ranking strategy generated by the
inference network model while the converse is not true.

To see that the belief network ranking subsumes any ranking generated
by an inference network, compare equations 2.6 and 2.13. The key distinction
is between the terms P(dj|E) and P(Eldj). For the latter, instantiation of the
document node d; separates the index term nodes making them mutually in-

dependent. Thus, the joint probability P(E|dj) can always be computed as the
product of the individual probabilities P(k;|d;). However, the computation of
P(d]-U;) might be non-decomposable in a product of term-based probabilities.
As a result, P(dj|E) can express any probability function defined with P(Eldj)
while the converse is not true.

One should not infer from the above comparison that the inference network
model is not a good model. On the contrary, it has been shown in the literature
that the inference network model allows top retrieval performance to be accom-
plished with general collections. Further, it is the retrieval model used by the
Inquery system. The point of the comparison is that, from a theoretical point
of view, the belief network model is more general. Also, it provides a separation
between the document space and the query space which simplifies the modeling
task.

2.8.5 Computational Costs of Bayesian Networks

In the inference network model, according to equation 2.6, only the states which
have a single document active node are considered. Thus, the cost of computing
the ranking is linear on the number of documents in the collection. As with
conventional collections, index structures such as inverted files (see Chapter 8)
are used to restrict the ranking computation to those documents which have
terms in common with the query. Thus, the cost of computing an inference
network ranking has the same complexity as the cost of computing a vectorial
ranking.

In the belief network model, according to equation 2.13, the only states
(of the roots nodes) considered (for computing the rank of a document d;) are
the ones in which the active nodes are exactly those associated with the query
terms. Thus, again, the cost of computing the ranking is linear on the number of
documents in the collection. If index structures are used, the cost of computing
a belief network ranking has the same complexity as the cost of computing a
vectorial ranking.

STRUCTURED TEXT RETRIEVAL MODELS 61

Therefore, the Bayesian network models discussed here do not impose sig-
nificant additional costs for ranking computation. This is so because the net-
works presented do not include cycles, which implies that belief propagation can
be done in a time proportional to the number of nodes in the network.

2.8.6 The Impact of Bayesian Network Models

The classic Boolean model is based on a neat formalism but is not very effective
for information retrieval. The classic vector model provides improved answer
sets but lacks a more formal framework. Many attempts have been made in the
past to combine the best features of each model. The extended Boolean model
and the generalized vector space model are two well known examples. These past
attempts are grounded in the belief that the combination of selected properties
from distinct models is a promising approach towards improved retrieval.

Bayesian network models constitute modern variants of probabilistic rea-
soning whose major strength (for information retrieval) is a framework which
allows the neat combination of distinct evidential sources to support a relevance
judgement (i.e., a numerical rank) on a given document. In this regard, belief
networks seem more appropriate than previous approaches and more promis-
ing. Further, besides allowing the combination of Boolean and vector features, a
belief network can be naturally extended to incorporate evidential information
derived from past user sessions [674] and feedback cycles [332].

The inference network model has been successfully implemented in the
Inquery retrieval system [122] and compares favorably with other retrieval sys-
tems. However, despite these promises, whether Bayesian networks will become
popular and widely used for information retrieval remains to be seen.

2.9 Structured Text Retrieval Models

Consider a user with a superior visual memory. Such a user might then recall
that the specific document he is interested in contains a page in which the string
‘atomic holocaust’ appears in italic in the text surrounding a Figure whose label
contains the word ‘earth.” With a classic information retrieval model, this query
could be expressed as [‘atomic holocaust’ and ‘earth’] which retrieves all the
documents containing both strings. Clearly, however, this answer contains many
more documents than desired by this user. In this particular case, the user would
like to express his query through a richer expression such as

same-page (near (‘atomic holocaust,” Figure (label (‘earth’))))

which conveys the details in his visual recollection. Further, the user might be
interested in an advanced interface which simplifies the task of specifying this
(now complex) query. This example illustrates the appeal of a query language
which allows us to combine the specification of strings (or patterns) with the

62 MODELING

specification of structural components of the document. Retrieval models which
combine information on text content with information on the document structure
are called structured text retrieval models.

For a query such as the one illustrated above, a structured text retrieval
system searches for all the documents which satisfy the query. Thus, there is
no notion of relevance attached to the retrieval task. In this sense, the cur-
rent structured text retrieval models are data (instead of information) retrieval
models. However, the retrieval system could search for documents which match
the query conditions only partially. In this situation, the matching would be ap-
proximate and some ranking would have to be used for ordering the approximate
answers. Thus, a structured text retrieval algorithm can be seen as an informa-
tion retrieval algorithm for which the issue of appropriate ranking is not well
established. In fact, this is an actual, interesting, and open research problem.

At the end of the 1980s and throughout the 1990s, various structured text
retrieval models have appeared in the literature. Usually, the more expressive
the model, the less efficient is its query evaluation strategy. Thus, selection
of a structured model for a given application must be exercised with care. A
good policy is to select the most efficient model which supports the functionality
required by the application in view.

Here, we do not survey all the structured text retrieval models. Instead,
we briefly discuss the main features of two of them, namely, a model based on
non-overlapping lists and a model based on prozimal nodes. These two models
should provide a good overview of the main issues and tradeoffs in structured
text retrieval.

We use the term match point to refer to the position in the text of a sequence
of words which matches (or satisfies) the user query. Thus, if the user specifies the
simple query [‘atomic holocaust in Hiroshima’'] and this string appears in three
positions in the text of a document d;, we say that the document d; contains
three match points. Further, we use the term region to refer to a contiguous
portion of the text and the term node to refer to a structural component of the
document such as a chapter, a section, a subsection, etc. Thus, a node is a region
with predefined topological properties which are known both to the author of
the document and to the user who searches the document system.

2.9.1 Model Based on Non-Overlapping Lists

Burkowski (132, 133] proposes to divide the whole text of each document in non-
overlapping text regions which are collected in a lst. Since there are multiple
ways to divide a text in non-overlapping regions, multiple lists are generated.
For instance, we might have a list of all chapters in the document, a second
list of all sections in the document, and a third list of all subsections in the
document. These lists are kept as separate and distinct data structures. While
the text regions in the same (flat) list have no overlapping, text regions from
distinct lists might overlap. Figure 2.11 illustrates four separate lists for the
same document.

STRUCTURED TEXT RETRIEVAL MODELS 63

° Chapter
L, cons

°* o o—— ¢ Scctions
L2 Subsections

o ° o - o0 " o o Subsubsections

Figure 2.11 Representation of the structure in the text of a document through four
separate (flat) indexing lists.

To allow searching for index terms and for text regions, a single inverted file
(see Chapter 8 for a definition of inverted files) is built in which each structural
component stands as an entry in the index. Associated with each entry, there
is a list of text regions as a list of occurrences. Moreover, such a list could be
easily merged with the traditional inverted file for the words in the text. Since
the text regions are non-overlapping, the types of queries which can be asked are
simple: (a) select a region which contains a given word (and does not contain
other regions); (b) select a region A which does not contain any other region B
(where B belongs to a list distinct from the list for A); (c) select a region not
contained within any other region, etc.

2.9.2 Model Based on Proximal Nodes

Navarro and Baeza-Yates [41, 589, 590] propose a model which allows the def-
inition of independent hierarchical (non-flat) indexing structures over the same
document text. Each of these indexing structures is a strict hierarchy composed
of chapters, sections, paragraphs, pages, and lines which are called nodes (see
Figure 2.12). To each of these nodes is associated a text region. Further, two
distinct hierarchies might refer to overlapping text regions.

Given a user query which refers to distinct hierarchies, the compiled answer
is formed by nodes which all come from only one of them. Thus, an answer cannot
be composed of nodes which come from two distinct hierarchies (which allows for
faster query processing at the expense of less expressiveness). Notice, however,
that due to the hierarchical structure, nested text regions (coming from the same
hierarchy) are allowed in the answer set.

Figure 2.12 illustrates a hierarchical indexing structure composed of four

64 MODELING

.- - Chapter

[® o————e Secctions
/\\\
/ .
/
1 4 \ v .
> — 9 o e o———o Subsections

—00——@ 06—00———00—0 0—00-0 Subsubsections

| holocaust le—s» @—ﬂﬂ}—* oo —’{ﬁ@,&
1

Figure 2.12 Hierarchical index for structural components and flat index for words.

levels (corresponding to a chapter, sections, subsections, and subsubsections of
the same document) and an inverted list for the word ‘holocaust.” The entries in
this inverted list indicate all the positions in the text of the document in which
the word ‘holocaust’ occurs. In the hierarchy, each node indicates the position
in the text of its associated structural component (chapter, section, subsection,
or subsubsection).

The query language allows the specification of regular expressions (to search
for strings), the reference to structural components by name (to search for chap-
ters, for instance), and a combination of these. In this sense, the model can be
viewed as a compromise between expressiveness and efficiency. The somewhat
limited expressiveness of the query language allows efficient query processing by
first searching for the components which match the strings specified in the query
and, subsequently, evaluating which of these components satisfy the structural
part of the query.

Consider, for instance, the query [(*section) with (‘holocaust’)] which
searches for sections, subsections, or subsubsections which contain the word
‘holocaust.” A simple query processing strategy is to traverse the inverted list
for the term ‘holocaust’ and, for each entry in the list (which indicates an occur-
rence of the term ‘holocaust’ in the text), search the hierarchical index looking
for sections, subsections, and subsubsections containing that occurrence of the
term. A more sophisticated query processing strategy is as follows. For the first
entry in the list for ‘holocaust,” search the hierarchical index as before. This
implies traversing down the hierarchy until no more successful matches occur
(or the bottom of the hierarchy is reached). Let the last matching structural
component be referred to as the innermost matching component. Once this first
search is concluded, do not start all over again for the following entry in the

MODELS FOR BROWSING 65

inverted list. Instead, verify whether the innermost matching component also
matches the second entry in the list. If it does, we immediately conclude that
the larger structural components above it (in the hierarchy) also do. Proceed
then to the third entry in the list, and so on. Notice that the query processing
is accelerated because only the nearby (or proximal) nodes in the list need to be
searched at each time. This is the reason for the label prorimal nodes.

The model based on proximal nodes allows us to formulate queries which
are more complex than those which can be formulated in the model based on non-
overlapping lists. To speed up query processing, however, only nearby (proximal)
nodes are looked at which imposes restrictions on the answer set retrieved (all
nodes must come from the same hierarchy). More complex models for structured
retrieval have been proposed in the literature as discussed in [41, 590].

2.10 Models for Browsing

As already observed, the user might not be interested in posing a specific query
to the system. Instead, he might be willing to invest some time in exploring
the document space looking for interesting references. In this situation, we say
that the user is browsing the space instead of searching. Both with browsing and
searching, the user has goals which he is pursuing. However, in general, the goal
of a searching task is clearer in the mind of the user than the goal of a browsing
task. As is obvious, this is not a distinction which is valid in all scenarios. But,
since it is simple and provides a clear separation between the tasks of searching
and browsing, it is adopted here. We distinguish three types of browsing namely,
flat, structure guided, and hypertext.

2.10.1 Flat Browsing

The idea here is that the user explores a document space which has a flat orga-
nization. For instance, the documents might be represented as dots in a (two-
dimensional) plan or as elements in a (single dimension) list. The user then
glances here and there looking for information within the documents visited.
For instance, he might look for correlations among neighbor documents or for
keywords which are of interest to him. Such keywords could then be added to
the original query in an attempt to provide better contextualization. This is a
process called relevance feedback which is discussed in detail in Chapter 5. Also,
the user could explore a single document in a flat manner. For example, he
could use a browser to look into a Web page, using the arrows and the scroll
bar. One disadvantage is that in a given page or screen there may not be any
indication about the context where the user is. For example, if he opens a novel
at a random page, he might not know in which chapter that page is.

Web search engines such as ‘Yahoo!” provide, besides the standard search
interface, a hierarchical directory which can be used for browsing (and frequently,
for searching). However, the organization is not flat as discussed below.

66 MODELING

2.10.2 Structure Guided Browsing

To facilitate the task of browsing, the documents might be organized in a struc-
ture such as a directory. Directories are hierarchies of classes which group doc-
uments covering related topics. Such hierarchies of classes have been used to
classify document collections for many centuries now. Thus, it seems natural
to.adapt them for use with modern browsing interfaces. In this case, we say
that the user performs a structure guided type of browsing. The same idea can
be applied to a single document. For example, if we are browsing an electronic
book, a first level of content could be the chapters, the second level, all sections,
and so on. The last level would be the text itself (flat). A good user interface
could go down or up those levels in a focused manner, assisting the user with
the task of keeping track of the context.

Besides the structure which directs the browsing task, the interface can also
include facilities such as a history map which identifies classes recently visited.
This might be quite useful for dealing with very large structures — an issue
discussed in Chapters 10 and 13. When searching, the occurrences can also be
displayed showing just the structure (for example, using the table of contents).
This allows us to see the occurrences in a global context instead of in a page of
text that may have no indication of where we are.

2.10.3 The Hypertext Model

One fundamental concept related to the task of writing down text is the notion
of sequencing. Written text is usually conceived to be read sequentially. The
reader should not expect to fully understand the message conveyed by the writer
by randomly reading pieces of text here and there. One might rely on the text
structure to skip portions of the text but this might result in miscommunication
between reader and writer. Thus, a sequenced organizational structure lies un-
derneath most written text. When the reader fails to perceive such a structure
and abide by it, he frequently is unable to capture the essence of the writer’s
message.

Sometimes, however, we are looking for information which is subsumed by
the whole text but which cannot be easily captured through sequential reading.
For instance, while glancing at a book about the history of the wars fought by
man, we might be momentarily interested solely in the regional wars in Europe.
We know that this information is in the book, but we might have a hard time
finding it because the writer did not organize his writings with this purpose (he
might have organized the wars chronologically). In such a situation, a different
organization of the text is desired. However, there is no point in rewriting the
whole text. Thus, the solution is to define a new organizational structure besides
the one already in existence. One way to accomplish such a goal is through the
design of a hypertext.

MODELS FOR BROWSING 67

Hypertext Definition and the Navigational Task

A hypertext is a high level interactive navigational structure which allows us to
browse text non-sequentially on a computer screen. It consists basically of nodes
which are correlated by directed links in a graph structure.

To each node is associated a text region which might be a chapter in a
book, a section in an article, or a Web page. Two nodes A and B might be
connected by a directed link | 4 g which correlates the texts associated with these
two nodes. In this case, the reader might move to the node B while reading the
text associated with the node A.

In its most conventional form, a hypertext link {45 is attached to a spe-
cific string inside the text for node A. Such a string is marked specially (for
instance, its characters might appear in a different color or underlined) to indi-
cate the presence of the underlying link. While reading the text, the user might
come across a marked string. If the user clicks on that string, the underlying
directed link is followed, and a new text region (associated with the node at the
destination) is displayed on the screen.

The process of navigating the hypertext can be understood as a traversal of
a directed graph. The linked nodes of the graph represent text nodes which are
semantically related. While traversing this graph the reader visualizes a flow of
information which was conceived by the designer of the hypertext. Consider our
previous example regarding a book on the wars fought by man. One might design
a hypertext composed of two distinct webs (here, a web is simply a connected
component formed by a subset of all links in the hypertext). While the first
web might be designed to provide access to the local wars fought in Europe
in chronological order, the second web might be designed to provide access to
the local wars fought by each European country. In this way, the user of this
hypertext can access the information according to his particular need.

When the hypertext is large, the user might lose track of the organizational
structure of the hypertext. The effect is that the user might start to take bad
navigational decisions which might sidetrack him from his main goal (which
usually consists of finding a piece of information in the hypertext). When this
happens, the user is said to be lost in hyperspace [604]. To avoid this problem,
it is desirable that the hypertext include a hypertext map which shows where
the user is at all times. In its simplest form, this map is a directed graph which
displays the current node being visited. Additionally, such a map could include
information on the paths the user has traveled so far. This can be used to remind
the user of the uselessness of following paths which have been explored already.

While navigating a hypertext, the user is restricted to the intended flow of
information previously conceived by the hypertext designer. Thus, the task of
designing a hypertext should take into account the needs of its potential users.
This implies the execution of a requirement analysis phase before starting the
actual implementation of the hypertext. Such a requirement analysis is critically
important but is frequently overlooked.

Furthermore, during the hypertext navigation, the user might find it dif-
ficult to orient himself. This difficulty arises even in the presence of a guiding

68 MODELING

tool such as the hypertext map discussed above. One possible reason is an exces-
sively complex hypertext organization with too many links which allow the user
to travel back and forth. To avoid this problem, the hypertext can have a simpler
structure which can be quickly remembered by the user at all times. For instance,
the hypertext can be organized hierarchically to facilitate the navigational task.

Definition of the structure of the hypertext should be accomplished in a
domain modeling phase (done after a requirement analysis phase). Further, after
the modeling of the domain, a user interface design should be concluded prior
to implementation. Only then, can we say that we have a proper hypertext
structure for the application at hand. In the Web, however, pages are usually
implemented with no attention paid to requirement analysis, domain modeling,
and user interface design. As a result, Web pages are frequently poorly conceived
and often fail to provide the user with a proper hypertext structure for assistance
with the information seeking task.

With large hypertexts, it might be difficult for the user to position himself
in the part of the whole graph which is of most interest to him. To facilitate this
initial positioning step, a search based on index terms might be used. In [540],
Manber discusses the advantages of this approach.

Hypertexts provided the basis for the conception and design of the hy-
pertext markup language (HTML) and the hypertext transfer protocol (HTTP)
which originated the World Wide Web (which we simply refer to as the Web). In
Chapter 13, we discuss the Web in detail. We briefly discuss some of its features
below.

About the Web

When one talks about the Web, the first concept which comes to mind is that
of a hypertext. In fact, we frequently think of the Web as a huge distributed
hypertext domain. However, the Web is not exactly a proper hypertext because
it lacks an underlying data model, it lacks a navigational plan, and it lacks
a consistently designed user interface. Each one of the millions of Web page
designers devises his own interface with its own peculiar characteristics. Many
times we visit a Web site simply looking for a phone number and cannot find it
because it is buried in the least expected place of the local hypertext structure.
Thus, the Web user has no underlying metaphor to assist him in the search for
information of interest.

Instead of saying that the Web is a hypertext, we prefer to say that it is
a pool of (partially) interconnected webs. Some of these webs might be charac-
terized as a local hypertext (in the sense that they have an underlying structure
which enjoys some consistency) but others might be simply a collection of pages
designed separately (for instance, the web of a university department whose pro-
fessors design their own pages). Despite not being exactly a hypertext, the Web
has provided us with a new dimension in communication functionality because
it is easily accessible world wide at very low cost. And maybe most important,
the Web has no control body setting up regulations and censorship rules. As a

BIBLIOGRAPHIC DISCUSSION 69

result, for the first time in the history of mankind, any one person can publish
his writings through a large medium without being subjected to the filtering of
an editorial board.

For a more thorough discussion of these and many other issues related to
the Web, the user is referred to Chapter 13.

2.11 Trends and Research Issues

There are three main types of products and systems which can benefit directly
from research in models for information retrieval: library systems, specialized
retrieval systems, and the Web.

Regarding library systems, there is currently much interest in cognitive and
behavioral issues oriented particularly at a better understanding of which criteria
the users adopt to judge relevance. From the point of view of the computer
scientist, a main question is how this knowledge about the user affects the ranking
strategies and the user interface implemented by the system. A related issue is
the investigation of how models other than the Boolean model (which is still
largely adopted by most large commercial library systems) affect the user of a
library.

A specialized retrieval system is one which is developed with a particu-
lar application in mind. For instance. the LEXIS-NEXIS retrieval system (see
Chapter 14), which provides access to a very large collection of legal and busi-
ness documents, is a good example of a specialized retrieval system. In such a
system, a key problem is how to retrieve (almost) all documents which might
be relevant to the user information need without also retrieving a large number
of unrelated documents. In this context, sophisticated ranking algorithms are
highly desirable. Since ranking based on single evidential sources is unlikely to
provide the appropriate answers, research on approaches for combining several
evidential sources seems highly relevant (as demonstrated at the various TREC
conferences, see Chapter 3 for details).

In the Web. the scenario is quite distinct and unique. In fact, the user
of the Web frequently does not know what he wants or has great difficulty in
properly formulating his request. Thus, research in advanced user interfaces is
highly desirable. From the point of view of the ranking engine, an interesting
problem is to study how the paradigm adopted for the user interface affects the
ranking. Furthermore, it is now well established that the indexes maintained by
the various Web search engines are almost disjoint (e.g., the ten most popular
search engines have indexes whose intersection corresponds to less than 2% of
the total number of pages indexed). In this scenario, research on meta-search
engines (i.e., engines which work by fusing the rankings generated by other search
engines) seems highly promising.

2.12 Bibliographic Discussion

Early in 1960, Maron and Kuhns [547] had already discussed the issues of rel-
evance and probabilistic indexing in information retrieval. Twenty-three years

70 MODELING

later, Salton and MecGill wrote a book [698] which became a classic in the field.
The book provides a thorough coverage of the three classic models in information
retrieval namely, the Boolean. the vector. and the probabilistic models. Another
landmark reference is the hook by van Rijsbergen [785] which, besides also cover-
ing the three classic models. presents a thorough and enjoyable discussion on the
probabilistic model. The hook edited by Frakes and Baeza-Yates [275] presents
several data structures and algorithms for IR and is more recent. Further, it
includes a discussion of ranking algorithms by Harman [340] which provides in-
teresting insights into the history of information retrieval from 1960 to 1990.

Boolean operations and their implementation are covered in [803]. The
inadequacy of Boolean queries for information retrieval was characterized early
on by Verhoeff, Goffiman. and Belzer [786]. The issue of adapting the Boolean
formalisin to operate with other frameworks received great attention. Book-
stein discusses the problems related with merging Boolean and weighted re-
trieval systems [101] and the implications of Boolean structure for probabilistic
retrieval [103]. Losce and Bookstein [522] cover the usage of Boolean queries with
probabilistic retrieval. Anick et al. [21] propose an interface based on natural
language for Boolean retrieval. A thesaurus-based Boolean retrieval system is
proposed in [493].

The vector model is maybe the most popular model among the research
community in information retrieval. Much of this popularity is due to the long-
term research of Salton aud his associates [697, 704]. Most of this research re-
volved around the SMART retrieval system developed at Cornell University [695,
842, 696]. Term weighting for the vector model has also been investigated thor-
oughly. Simple term weighting was used early on by Salton and Lesk [697].
Sparck Jones introduced the idf factor [409, 410] and Salton and Yang verified
its effectiveness for improving retrieval [704]. Yu and Salton [842] further stud-
led the effects of term weighting in the final ranking. Salton and Buckley [696]
summarize 20 years of experiments in term weighting with the SMART system.
Raghavan and Wong [665] provide a critical analysis of the vector model.

The probabilistic model was introduced by Robertson and Sparck Jones
[677] and is thoroughly discussed in [785]. Experimental studies with the model
were conducted by Sparck Jones [111. 412] which used feedback from the user to
estimate the initial probabilities. Croft and Harper [199] proposed a method to
estimate these probabilities without feedback from the user. Croft [198] later on
added within-document frequency weights into the model. Fuhr discusses proba-
bilistic indexing through polynomial retrieval functions [281, 284]. Cooper. Gey,
and Dabney [186] and later on Gey [295] propose the use of logistic regression
with probabilistic retrieval. Lee and Kantor [494] study the effect of inconsistent
expert judgements on probabilistic retrieval. Fuhr [282] reviews various vari-
ants of the classic probabilistic model. Cooper [187]. in a seminal paper, raises
troubling questions on the utilization of the probabilistic ranking principle in
information retrieval.

The inference network model was introduced by Turtle and Croft {772, 771)
in 1990. Haines and Croft [332] discuss the utilization of inference networks for
user relevance feedback (see Chapter 5). Callan, Lu. and Croft [139] use an

BIBLIOGRAPHIC DISCUSSION 71

inference network to search distributed document collections. Callan [138], in
his turn, discusses the application of inference networks to information filtering.
The belief network model, due to Ribeiro-Neto and Muntz [674], generalizes the
inference network model.

The extended Boolean model was introduced by Salton, Fox. and Wu [703].
Lee, Kim, Kim, and Lee [496] discuss the evaluation of Boolcan operators with
the extended Boolean model, while properties of the model are discussed in [495].
The generalized vector space model was introduced in 1985 by Wong. Ziarko. and
Wong [832, 831]. Latent semantic indexing was introduced in 1988 by Furnas,
Deerwester, Dumais, Landauer. Harshman, Streeter. and Lochbaum [287]. In a
subsequent paper, Bartell, Cottrell. and Belew [62] show that latent semantic
indexing can be interpreted as a special case of multidimensional scaling.

Regarding neural network models for information retrieval, our discussion
in this book is based mainly on the work by Wilkinson and Hingston [815].
But we also benefited from the writings of Kwok on the subject and related
topics [466, 467, 469, 168].

The fuzzy set model (for information retrieval) covered in this book is due
to Ogawa, Morita, and Kobayvashi [616]. The utilization of fuzzy theory in infor-
mation retrieval goes back to the 1970s with the work of Radecki [658. 659, 660,
661], of Sachs [691]. and of Tahani [755]. Bookstein [102] proposes the utilization
of fuzzy operators to deal with weighted Boolean searches. Kraft and Buel [461]
utilize fuzzy sets to generalize a Boolean system. Miyamoto, Miyake, and
Nakayama [567] discuss the generation of a pseudothesaurus using co-occurrences
and fuzzy operators. Subsequently, Miyamoto and Nakayama [568] discuss the
utilization of this thesaurus with information retrieval systems.

Our discussion on structured text is based on the survey by [41]. An-
other survey of interest (an older one though) is the work by MacLeod [533].
Burkowski [132, 133] proposed a model based on non-overlapping regions.
Clarke, Cormack, and Burkowski [173] extended this model with overlapping
capabilities. The model based on proximal nodes was proposed by Navarro and
Baeza-Yates [589, 590]. In [534]. MacLeod introduced a model based on a sin-
gle hierarchy which also associates attributes with nodes in the hierarchy (for
database-like querying) and hypertext links with pairs of nodes. Kilpelainen and
Mannila [439] discuss the retrieval from hierarchical texts through the specifica-
tion of partial patterns. In [183], Consens and Milo discuss algebras for querying
text regions.

A classic reference on hypertexts is the book by Nielsen [604]. Another
popular reference is the book by Shneiderman and Kearsley [727]. Conklin [181]
presents an introductory survey of the area. The Communications of the ACM
dedicated an special edition [177] to hypermedia which discusses in detail the
Dexter model - a reference standard on the terminology and semantics of basic
hypermedia concepts. A subsequent edition [178] was dedicated to the presen-
tation of various models for supporting the design of hypermedia applications.

Chapter 3
Retrieval Evaluation

3.1 Introduction

Before the final implementation of an information retrieval system. an evalua-
tion of the system is usually carried out. The type of evaluation to be considered
depends on the objectives of the retrieval system. Clearly, any software system
has to provide the functionality it was conceived for. Thus, the first type of
evaluation which should be considered is a functional analysis in which the spec-
ified system functionalities are tested one by one. Such an analysis should also
include an error analysis phase in which, instead of looking for functionalities,
one behaves erratically trying to make the system fail. It is a simple procedure
which can be quite useful for catching programming errors. Given that the sys-
tem has passed the functional analysis phase, one should proceed to evaluate the
performance of the system.

The most common measures of system performance are time and space.
The shorter the response time, the smaller the space used, the better the system
is considered to be. There is an inherent tradeoff between space complexity and
time complexity which frequently allows trading one for the other. In Chapter 8
we discuss this issue in detail.

In a system designed for providing data retrieval, the response time and the
space required are usually the metrics of most interest and the ones normally
adopted for evaluating the system. In this case, we look for the performance
of the indexing structures (which are in place to accelerate the search), the
interaction with the operating system, the delays in communication channels,
and the overheads introduced by the many software layers which are usually
present. We refer to such a form of evaluation simply as performance evaluation.

In a system designed for providing information retrieval, other metrics,
besides time and space, are also of interest. In fact, since the user query request
is inherently vague, the retrieved documents are not exact answers and have
to be ranked according to their relevance to the query. Such relevance ranking
introduces a component which is not present in data retrieval systems and which
plays a central role in information retrieval. Thus, information retrieval systems
require the evaluation of how precise is the answer set. This type of evaluation
is referred to as retrieval performance evaluation.

73

74 RETRIEVAL EVALUATION

In this chapter. we discuss retrieval performance evaluation for information
retrieval systems. Such an evalnation is usually based on a test reference collec-
tion and on an evaluation measure. The test reference collection consists of a
collection of documents, a set of example information requests. and a set of rele-
vant documents (provided by specialists) for each example information request.
Given a retrieval strategy S, the evaluation measure quantifies (for each example
information request) the similarity between the set of documents retrieved by S
and the set of relevant documents provided by the specialists. This provides an
estimation of the goodness of the retrieval strategy S.

In our discussion, we first cover the two most used retrieval evaluation mea-
sures: recall and precision. We also cover alternative evaluation measures such
as the E measure, the harmonic mean, satisfaction, frustration, etc. Following
that, we cover four test reference collections namely. TIPSTER/TREC, CACM,
CISI. and Cystic Fibrosis.

3.2 Retrieval Performance Evaluation

When considering retrieval performance evaluation, we should first consider the
retrieval task that is to be evaluated. For instance, the retrieval task could
consist simply of a query processed in batch mode (i.e., the user submits a
query and receives an answer back) or of a whole interactive session (i.e., the
user specifies his information need through a series of interactive steps with the
system). Further, the retrieval task could also comprise a combination of these
two strategies. Batch and interactive query tasks are quite distinet processes and
thus their evaluations are also distinct. In fact, in an interactive session, user
effort, characteristics of the interface design. guidance provided by the system,
and duration of the session are critical aspects which should be observed and
measured. In a batch session. none of these aspects is nearly as important as the
quality of the answer set generated.

Besides the nature of the query request. one has also to consider the setting
where the evaluation will take place and the type of interface used. Regarding the
setting, evaluation of experiments performed in a laboratory might be quite dis-
tinct from evaluation of experiments carried out in a real life situation. Regarding
the type of interface, while early bibliographic systems (which still dominate the
commercial market as discussed in Chapter 14) present the user with interfaces
which normally operate in batch mode, newer systems (which are been popu-
larized by the high quality graphic displays available nowadays) usually present
the user with complex interfaces which often operate interactively.

Retrieval performance evaluation in the early days of computer-based infor-
mation retrieval systems focused primarily on laboratory experiments designed
for batch interfaces. In the 1990s. a lot more attention has been paid to the
evaluation of real life experiments. Despite this tendency. laboratory experi-
mentation is still dominant. Two main reasons are the repeatability and the
scalability provided by the closed setting of a laboratory.

RETRIEVAL PERFORMANCE EVALUATION 75

In this book, we focus mainly on experiments performed in laboratories.
In this chapter in particular we discuss solely the evaluation of systems which
operate in batch mode. Evaluation of systems which operate interactively is
briefly discussed in Chapter 10.

3.2.1 Recall and Precision

Consider an example informatior request I (of a test reference collection) and
its set R of relevant documents. Let |R| be the number of documents in this set.
Assume that a given retrieval strategy (which is being evaluated) processes the
information request I and generates a document answer set A. Let |A| be the
number of documents in this set. Further, let |Ra| be the number of documents
in the intersection of the sets R and A. Figure 3.1 illustrates these sets.

The recall and precision measures are defined as follows.

e Recall is the fraction of the relevant documents (the set R) which has been
retrieved i.e.,

R
Recall = ——
e Precision is the fraction of the retrieved documents (the set A) which is

relevant i.e.,

|Ra|
|Al

Precision =

Recall and precision, as defined above, assume that all the documents in the
answer set A have been examined (or seen). However, the user is not usually
presented with all the documents in the answer set A at once. Instead, the

Relevant Docs
in Answer Set

Collection
IRa| - .
-
N \—::,;W
e
—
—_—
Relevaﬂu f):)cs ~ Answer Se;

|4l

Figure 3.1 Precision and recall for a given example information request.

76 RETRIEVAL EVALUATION

documents in A are first sorted according to a degree of relevance (i.e., a ranking
is generated). The user then examines this ranked list starting from the top
document. In this situation, the recall and precision measures vary as the user
proceeds with his examination of the answer set A. Thus, proper evaluation
requires plotting a precision versus recall curve as follows.

As before, consider a reference collection and its set of example information
requests. Let us focus on a given example information request for which a query
q is formulated. Assume that a set R, containing the relevant documents for q
has been defined. Without loss of generality, assume further that the set R, is
composed of the following documents

Ry = {d3.ds.dy, ds, dsg. das, dse, d71, dgo, d123} (3.1)

Thus, according to a group of specialists, there are ten documents which are
relevant to the query q.

Consider now a new retrieval algorithm which has just been designed. As-
sume that this algorithm returns, for the query g, a ranking of the documents in
the answer set as follows.

Ranking for query g:

1. dl‘ZS L 4 6. dg L4 11. dgg
2. d84 7. dgn 12. d43
3. (155 ® 8. d129 13. d250
4. (l’(; 9. d187 14. d113
5. dg 10. (i25 L 15. d3 L

The documents that are relevant to the query g are marked with a bullet after the
document number. If we examine this ranking, starting from the top document,
we observe the following points. First, the document dio3 which is ranked as
number 1 is relevant. Further, this document corresponds to 10% of all the
relevant documents in the set R,. Thus, we say that we have a precision of
100% at 10% recall. Second. the document dse which is ranked as number 3
is the next relevant document. At this point, we say that we have a precision
of roughly 66% (two documents out of three are relevant) at 20% recall (two
of the ten relevant documents have been seen). Third. if we proceed with our
examination of the ranking generated we can plot a curve of precision versus
recall as illustrated in Figure 3.2. The precision at levels of recall higher than
50% drops to 0 because not all relevant documents have been retrieved. This
precision versus recall curve is usually based on 11 (instead of ten) standard recall
levels which are 0%, 10%, 20%. ..., 100%. For the recall level 0%. the precision
is obtained through an interpolation procedure as detailed below.

In the above example, the precision and recall figures are for a single query.
Usually. however. retrieval algorithms are evaluated by running them for several
distinct queries. In this case, for each query a distinct precision versus recall
curve is generated. To evaluate the retrieval performance of an algorithm over

RETRIEVAL PERFORMANCE EVALUATION 77

120

100 +——

Precision
3

Figure 3.2 Precision at 11 standard recall levels.

all test queries, we average the precision figures at each recall level as follows.

P(r) =

(3.2)

where P(r) is the average precision at the recall level r, N; is the number of
queries used, and P;(r) is the precision at recall level r for the i-th query.

Since the recall levels for each query might be distinct from the 11 standard
recall levels, utilization of an interpolation procedure is often necessary. For
instance, consider again the set of 15 ranked documents presented above. Assume
that the set of relevant documents for the query g has changed and is now given
by

Ry = {d3, ds6,d120} (3.3)

In this case, the first relevant document in the ranking for query g is dss which
provides a recall level of 33.3% (with precision also equal to 33.3%) because,
at this point, one-third of all relevant documents have already been seen. The
second relevant document is dy29 which provides a recall level of 66.6% (with
precision equal to 25%). The third relevant document is d3 which provides a
recall level of 100% (with precision equal to 20%). The precision figures at the
11 standard recall levels are interpolated as follows.

Let 75, j € {0,1,2....,10}, be a reference to the j-th standard recall level
(i.e., r5 is a reference to the recall level 50%). Then,

P(r;) = max r,<r<r,, P(r) (3.4)

78 RETRIEVAL EVALUATION
120 —- e e

100 +
80

60 i:

Precision

40 -

! Te—————— e
20 A e e
|

0 20 40 60 80 100 120
Recall

Figure 3.3 Interpolated precision at 11 standard recall levels relative to R, =
{ds, ds6, d120}.

which states that the interpolated precision at the j-th standard recall level is
the maximum known precision at any recall level between the j-th recall level
and the (j + 1)-th recall level.

In our last example, this interpolation rule yields the precision and recall
figures illustrated in Figure 3.3. At recall levels 0%, 10%, 20%, and 30%, the
interpolated precision is equal to 33.3% (which is the known precision at the recall
level 33.3%). At recall levels 40%, 50%, and 60%, the interpolated precision is
25% (which is the precision at the recall level 66.6%). At recall levels 70%, 80%,
90%, and 100%, the interpolated precision is 20% (which is the precision at recall
level 100%).

The curve of precision versus recall which results from averaging the results
for various queries is usually referred to as precision versus recall figures. Such
average figures are normally used to compare the retrieval performance of distinct
retrieval algorithms. For instance, one could compare the retrieval performance
of a newly proposed retrieval algorithm with the retrieval performance of the
classic vector space model. Figure 3.4 illustrates average precision versus recall
figures for two distinct retrieval algorithms. In this case, one algorithm has
higher precision at lower recall levels while the second algorithm is superior at
higher recall levels.

One additional approach is to compute average precision at given document
cutoff values. For instance, we can compute the average precision when 5, 10,
15, 20. 30, 50, or 100 relevant documents have been seen. The procedure is
analogous to the computation of average precision at 11 standard recall levels
but provides additional information on the retrieval performance of the ranking
algorithm.

Average precision versus recall figures are now a standard evaluation strat-
egy for information retrieval systems and are used extensively in the informa-
tion retrieval literature. They are useful because they allow us to evaluate

RETRIEVAL PERFORMANCE EVALUATION 79

Precision

80 100 120
Recall

Figure 3.4 Average recall versus precision figures for two distinct retrieval algo-
rithms.

quantitatively both the quality of the overall answer set and the breadth of the
retrieval algorithm. Further, they are simple, intuitive, and can be combined in
a single curve. However, precision versus recall figures also have their disadvan-
tages and their widespread usage has been criticized in the literature. We return
to this point later on. Before that, let us discuss techniques for summarizing
precision versus recall figures by a single numerical value.

Single Value Summaries

Average precision versus recall figures are useful for comparing the retrieval per-
formance of distinct retrieval algorithms over a set of example queries. However,
there are situations in which we would like to compare the retrieval performance
of our retrieval algorithms for the individual queries. The reasons are twofold.
First, averaging precision over many queries might disguise important anoma-
lies in the retrieval algorithms under study. Second, when comparing two algo-
rithms, we might be interested in investigating whether one of them outperforms
the other for each query in a given set of example queries (notice that this fact
can be easily hidden by an average precision computation). In these situations,
a single precision value (for each query) can be used. This single value should
be interpreted as a summary of the corresponding precision versus recall curve.
Usually, this single value summary is taken as the precision at a specified recall
level. For instance, we could evaluate the precision when we observe the first rel-
evant document and take this precision as the single value summary. Of course,
as seems obvious, this is not a good approach. More interesting strategies can
be adopted as we now discuss.

80 RETRIEVAL EVALUATION

Average Precision at Seen Relevant Documents

The idea here is to generate a single value summary of the ranking by averag-
ing the precision figures obtained after each new relevant document is observed
(in the ranking). For instance. consider the example in Figure 3.2. The preci-
sion figures after cach new relevant document is observed are 1. 0.66. 0.5. 0.4.
and 0.3. Thus. the average precision at seen relevant documents is given by
(140.66+0.540.4+0.3)/5 or 0.57. This measure favors systems which retrieve
relevant documents quickly (i.e.. early in the ranking). Of course. an algorithm
might present a good average precision at seen relevant documents but have a
poor performance in terins of overall recall.

R-Precision

The idea here is to generate a single value summary of the ranking by computing
the precision at the R-th position in the ranking, where R is the total number
of relevant documents for the current query (i.e.. number of documents in the
set R,). For instance, consider the examples in Figures 3.2 and 3.3. The value
of R-precision is 0.4 for the first example (because R = 10 and there are four
relevant documents among the first ten documents in the ranking) and 0.33 for
the second example (because R = 3 and there is one relevant document among
the first three documents in the ranking). The R-precision measure is a useful
parameter for observing the behavior of an algorithin for each individual query
in an experiment. Additionally, one can also compute an average R-precision
figure over all queries. However, using a single number to summarize the full
behavior of a retrieval algorithm over several queries might be quite imprecise.

Precision Histograms

The R-precision measures for several queries can be used to compare the retrieval
history of two algorithms as follows. Let RP4(i) and RPg(i) be the R-precision
values of the retrieval algorithms A and B for the i-th query. Define, for instance,
the difference

RPy4;5(i) = RPa(i) — RPp(i) (3.5)

A value of RP,, (i) equal to 0 indicates that both algorithms have equivalent
performance (in terms of R-precision) for the i-th query. A positive value of
RP4,p(i) indicates a better retrieval performance by algorithm A (for the -
th query) while a negative value indicates a better retrieval performmance by
algorithm B. Figure 3.5 illustrates the RP,,p(i) values (labeled R-Precision
A/B) for two hypothetical retrieval algorithms over ten example queries. The
algorithm A is superior for eight queries while the algorithm B performs better
for the two other queries (numbered 4 and 5). This type of bar graph is called a
precision histogram and allows us to quickly compare the retrieval performance
history of two algorithms through visual inspection.

Summary Table Statistics
Single value measures can also be stored in a table to provide a statistical sumn-
mary regarding the set of all the queries in a retrieval task. For instance, these

RETRIEVAL PERFORMANCE EVALUATION 81

0.5

INIRIN:

0.0

R-Precision A/B

-0.5

w
»
]
o
~
@
©
3

Query Number

Figure 3.5 A precision histogram for ten hypothetical queries.

summary table statistics could include: the number of queries used in the task,
the total number of documents retrieved by all queries, the total number of rele-
vant documents which were effectively retrieved when all queries are considered,
the total number of relevant documents which could have been retrieved by all
queries, etc.

Precision and Recall Appropriateness

Precision and recall have been used extensively to evaluate the retrieval perfor-
mance of retrieval algorithms. However, a more careful reflection reveals prob-
lems with these two measures [451, 664. 754]. First, the proper estimation of
maximumn recall for a query requires detailed knowledge of all the documents
in the collection. With large collections, such knowledge is unavailable which
implies that recall cannot be estimated precisely. Second, recall and precision
are related measures which capture different aspects of the set of retrieved doc-
uments. In many situations, the use of a single measure which combines recall
and precision could be more appropriate. Third, recall and precision measure
the effectiveness over a set of queries processed in batch mode. However, with
modern systems, interactivity (and not batch processing) is the key aspect of
the retrieval process. Thus, measures which quantify the informativeness of the
retrieval process might now be more appropriate. Fourth, recall and precision
are easy to define when a linear ordering of the retrieved documents is enforced.
For systems which require a weak ordering though, recall and precision might be
inadequate.

82 RETRIEVAL EVALUATION

3.2.2 Aiternative Measures

Since recall and precision, despite their popularity, are not always the most
appropriate measures for evaluating retrieval performance, alternative measures
have been proposed over the years. A brief review of some of them is as follows.

The Harmonic Mean

As discussed above, a single measure which combines recall and precision might
be of interest. One such measure is the harmonic mean F of recall and preci-
sion [422] which is computed as

F) = (3.6)

2
1 1
T EH

where r(j) is the recall for the j-th document in the ranking, P(j) is the precision
for the j-th document in the ranking, and F(j) is the harmonic mean of r(j)
and P(j) (thus, relative to the j-th document in the ranking). The function F
assumes values in the interval [0,1]. It is 0 when no relevant documents have
been retrieved and is 1 when all ranked documents are relevant. Further, the
harmonic mean F' assumes a high value only when both recall and precision are
high. Therefore, determination of the maximum value for F can be interpreted
as an attempt to find the best possible compromise between recall and precision.

The E Measure

Another measure which combines recall and precision was proposed by van Ri-
jsbergen [785] and is called the E evaluation measure. The idea is to allow the
user to specify whether he is more interested in recall or in precision. The E
measure is defined as follows.

. 1+ b2
EG)=1- 55—+
@ T EG

where 7(j) is the recall for the j-th document in the ranking, P(j) is the precision
for the j-th document in the ranking, E(j) is the E evaluation measure relative
to 7(j) and P(j), and b is a user specified parameter which reflects the relative
importance of recall and precision. For b = 1, the E(j) measure works as the
complement of the harmonic mean F(j). Values of b greater than 1 indicate that
the user is more interested in precision than in recall while values of b smaller
than 1 indicate that the user is more interested in recall than in precision.

RETRIEVAL PERFORMANCE EVALUATION 83

User-Oriented Measures

Recall and precision are based on the assumption that the set of relevant docu-
ments for a query is the same, independent of the user. However, different users
might have a different interpretation of which document is relevant and which one
is not. To cope with this problem, user-oriented measures have been proposed
such as coverage ratio, novelty ratio, relative recall, and recall effort [451].

As before, consider a reference collection, an example information request
I, and a retrieval strategy to be evaluated. Let R be the set of relevant documents
for I and A be the answer set retrieved. Also, let U be the subset of R which is
known to the user. The number of documents in U is [U|. The intersection of
the sets A and U yields the documents known to the user to be relevant which
were retrieved. Let |Rk| be the number of documents in this set. Further, let
|Ru| be the number of relevant documents previously unknown to the user which
were retrieved. Figure 3.6 illustrates the situation. The coverage ratio is defined
as the fraction of the documents known (to the user) to be relevant which has
actually been retrieved i.e.,

|RE|
coverage = ——
Ui

The novelty ratio is defined as the fraction of the relevant documents retrieved
which was unknown to the user i.e.,

lty = — 1B
MOVEY = TRu[+ |RK]

A high coverage ratio indicates that the system is finding most of the relevant
documents the user expected to see. A high novelty ratio indicates that the
system is revealing (to the user) many new relevant documents which were pre-
viously unknown.

Set
Relevant Docs Ans»l‘::'r ¢
IR}
Relevant Docs
known to the User
lul
Relevant Docs Relevant Docs
known to the User previously unknown to the
which were retrieved User which were retrieved
|RK| |Ru|

Figure 3.6 Coverage and novelty ratios for a given example information request:

84 RETRIEVAL EVALUATION

Additionally, two other measures can be defined as follows. The relative
recall is given by the ratio between the number of relevant documents found (by
the system) and the number of relevant documents the user expected to find.
In the case when the user finds as many relevant documents as he expected, he
stops searching and the relative recall is equal to 1. The recall effort is given
by the ratio between the number of relevant documents the user expected to
find and the number of documents examined in an attempt to find the expected
relevant documents.

Other Measures

Other measures which might be of interest include the ezpected search length,
which is good for dealing with sets of documents weakly ordered, the satisfaction,
which takes into account only the relevant documents, and the frustration, which
takes into account only the non-relevant documents {451].

3.3 Reference Collections

In this section we discuss various reference collections which have been used
throughout the years for the evaluation of information retrieval systems. We
first discuss the TIPSTER/TREC collection which, due to its large size and thor-
ough experimentation, is usually considered to be the reference test collection
in information retrieval nowadays. Following that, we cover the CACM and ISI
collections due to their historical importance in the area of information retrieval.
We conclude this section with a brief discussion of the Cystic Fibrosis collection.
It is a small collection whose example information requests were extensively stud-
ied by four groups of specialists before generation of the relevant document sets.

3.3.1 The TREC Collection

Research in information retrieval has frequently been criticized on two fronts.
First, that it lacks a solid formal framework as a basic foundation. Second,
that it lacks robust and consistent testbeds and benchmarks. The first of these
criticisms is difficult to dismiss entirely due to the inherent degree of psycho-
logical subjectiveness associated with the task of deciding on the relevance of a
given document (which characterizes information, as opposed to data, retrieval).
Thus, at least for now, research in information retrieval will have to proceed
without a solid formal underpinning. The second of these criticisms, however,
can be acted upon. For three decades, experimentation in information retrieval
was based on relatively small test collections which did not reflect the main
issues present in a large bibliographical environment. Further, comparisons be-
tween various retrieval systems were difficult to make because distinct groups
conducted experiments focused on distinct aspects of retrieval (even when the
same test collection was used) and there were no widely accepted benchmarks.

REFERENCE COLLECTIONS 85

In the early 1990s, a reaction to this state of disarray was initiated under the
leadership of Donna Harman at the National Institute of Standards and Tech-
nology (NIST), in Maryland. Such an effort consisted of promoting a yearly
conference, named TREC for Text REtrieval Conference, dedicated to experi-
mentation with a large test collection comprising over a million documents. For
each TREC conference, a set of reference experiments is designed. The research
groups which participate in the conference use these reference experiments for
comparing their retrieval systems.

A clear statement of the purpose of the TREC conferences can be found in
the NIST TREC Web site [768] and reads as follows.

The TREC conference series is co-sponsored by the National Institute
of Standards and Technology (NIST) and the Information Technology
Office of the Defense Advanced Research Projects Agency (DARPA)
as part of the TIPSTER Text Program. The goal of the conference
series is to encourage research in information retrieval from large text
applications by providing a large test collection, uniform scoring pro-
cedures, and a forum for organizations interested in comparing their
results. Attendance at TREC conferences is restricted to those re-
searchers and developers who have performed the TREC retrieval
tasks and to selected government personnel from sponsoring agen-
cies.

Participants in a TREC conference employ a wide variety of retrieval
techniques, including methods using automatic thesauri, sophisti-
cated term weighting, natural language techniques, relevance feed-
back, and advanced pattern matching. Each system works with the
same test collection that consists of about 2 gigabytes of text (over 1
million documents) and a given set of information needs called ‘top-
ics.” Results are run through a common evaluation package so that
groups can compare the effectiveness of different techniques and can
determine how differences between systems affect performance.

Since the collection was built under the TIPSTER program, it is frequently
referred to as the TIPSTER or the TIPSTER/TREC test collection. Here,
however, for simplicity we refer to it as the TREC collection.

The first TREC conference was held at NIST in November 1992, while the
second TREC conference occurred in August 1993. In November 1997, the sixth
TREC conference was held (also at NIST) and counted the following participat-
ing organizations (extracted from [794]):

Apple Computer City Univ., London

AT&T Labs Research CLARITECH Corporation
Australian National Univ. Cornell Univ./SaBIR Research, Inc.
Carnegie Mellon Univ. CSIRO (Australia)

CEA (France) Daimler Benz Res. Center, Ulm

Center for Inf. Res., Russia Dublin Univ. Center

86 RETRIEVAL EVALUATION

Duke Univ./Univ. of Colorado/Bellcore Oregon Health Sciences Univ. -

ETH (Switzerland) Queens College, CUNY

FS Consulting, Inc. Rutgers Univ. (2 groups)

GE Corp./Rutgers Univ. Siemens AG

George Mason Univ./NCR Corp. SRI International

Harris Corp. TwentyOne

IBM T.J. Watson Res. (2 groups) Univ. California, Berkeley

ISS (Singapore) Univ. California, San Diego

ITI (Singapore) Univ. Glasgow

APL, Johns Hopkins Univ. Univ. Maryland, College Park
LEXIS-NEXIS Univ. Massachusetts, Amherst
MDS at RMIT, Australia Univ. Montreal

MIT/IBM Almaden Res. Center Univ. North Carolina (2 groups)
MSI/IRIT/Univ. Toulouse Univ. Sheffield/Univ. Cambridge
NEC Corporation Univ. Waterloo

New Mexico State Univ. (2 groups) Verity, Inc.

NSA (Speech Research Group) Xerox Res. Centre Europe

Open Text Corporation

The seventh TREC conference was held again at NIST in November of 1998.

In the following, we briefly discuss the TREC document collection and the
{benchmark) tasks at the TREC conferences. As with most test collections,
the TREC collection is composed of three parts: the documents, the example
information requests (called topics in the TREC nomenclature), and a set of
relevant documents for each example information request. Further, the TREC
conferences also include a set of tasks to be used as a benchmark.

The Document Collection

The TREC collection has been growing steadily over the years. At TREC-3,
the collection size was roughly 2 gigabytes while at TREC-6 it had gone up to
roughly 5.8 gigabytes. In the beginning, copyright restrictions prevented free
distribution of the collection and, as a result, the distribution CD-ROM disks
had to be bought. In 1998, however, an arrangement was made which allows
free access to the documents used in the most recent TREC conferences. As a
result, TREC disk 4 and TREC disk 5 are now available from NIST at a small
fee (US$200 in 1998) to cover distribution costs. Information on how to obtain
the collection (which comes with the disks) and the topics with their relevant
document sets (which have to be retrieved through the network) can be obtained
directly from the NIST TREC Web site [768].

The TREC collection is distributed in six CD-ROM disks of roughly 1 giga-
byte of compressed text each. The documents come from the following sources:

WSJ — Wall Street Journal

AP — Associated Press (news wire)

ZIFF — Computer Selects (articles), Ziff-Davis
FR — Federal Register

REFERENCE COLLECTIONS 87

DOE — US DOE Publications (abstracts)
SIMN — San Jose Mercury News

PAT — US Patents

FT — Financial Times

CR — Congressional Record

FBIS — Foreign Broadcast Information Service
LAT — LA Times

Table 3.1 illustrates the contents of each disk and some simple statistics regarding
the collection (extracted from [794]). Documents from all subcollections are

Disk Contents Size Number Words/Doc. Words/Doc.
Mb Docs (median) (mean)
1 WSJ, 1987-1989 267 98,732 245 434.0
AP, 1989 254 84,678 446 473.9
ZIFF 242 75,180 200 473.0
FR, 1989 260 25,960 391 1315.9
DOE 184 226,087 111 120.4
2 WSJ, 1990-1992 242 74,520 301 508.4
AP, 1988 237 79,919 438 468.7
ZIFF 175 56,920 182 451.9
FR, 1988 209 19,860 396 1378.1
3 SIMN, 1991 287 90,257 379 453.0
AP, 1990 237 78,321 451 478.4
ZIFF 345 161,021 122 295.4
PAT, 1993 243 6,711 4,445 5391.0
4 FT, 1991-1994 564 210,158 316 412.7
FR, 1994 395 55,630 588 644.7
CR, 1993 235 27,922 288 1373.5
5 FBIS 470 130,471 322 543.6
LAT 475 131,896 351 526.5
6 FBIS 490 120,653 348 581.3

Table 3.1 Document collection used at TREC-6. Stopwords are not removed and no
stemming is performed (see Chapter 7 for details on stemming).

tagged with SGML (see Chapter 6) to allow easy parsing (which implies simple
coding for the groups participating at TREC conferences). Major structures
such as a field for the document number (identified by <DOCNO>) and a field
for the document text (identified by <TEXT>) are common to all documents.
Minor structures might be different across subcollections to preserve parts of the
structure in the original document. This has been the philosophy for formatting
decisions at NIST: preserve as much of the original structure as possible while
providing a common framework which allows simple decoding of the data.

An example of a TREC document is the document numbered 880406-0090

88 RETRIEVAL EVALUATION

<doc>

<docno> WSJ880406-0090 </docno>

<hl> AT&T Unveils Services to Upgrade Phone Networks Under
Global Plan </hl>

<author> Janet Guyon (WSJ Staff) </author>

<dateline> New York </dateline>

<text>

American Telephone & Telegraph Co. introduced the first of a new
generation of phone services with broad ...

<[text>

< /doc>

Figure 3.7 TREC document numbered WSJ880406-0090.

in the Wall Street Journal subcollection which is shown in Figure 3.7 (extracted
from [342]). Further details on the TREC document collection can be obtained
from [794, 768].

The Example Information Requests (Topics)

The TREC collection includes a set of example information requests which can
be used for testing a new ranking algorithm. Each request is a description of
an information need in natural language. In the TREC nomenclature, each test
information request is referred to as a topic. An example of an information re-
quest in TREC is the topic numbered 168 (prepared for the TREC-3 conference)
which is illustrated in Figure 3.8 (extracted from [342]).

The task of converting an information request (topic) into a system query
(i.e., a set of index terms, a Boolean expression, a fuzzy expression, etc.) must
be done by the system itself and is considered to be an integral part of the
evaluation procedure.

The number of topics prepared for the first six TREC conferences goes up to
350. The topics numbered 1 to 150 were prepared for use with the TREC-1 and
TREC-2 conferences. They were written by people who were experienced users
of real systems and represented long-standing information needs. The topics
numbered 151 to 200 were prepared for use with the TREC-3 conference, are
shorter, and have a simpler structure which includes only three subfields (named
Title, Description, and Narrative as illustrated in the topic 168 above). The
topics numbered 201 to 250 were prepared for use with the TREC-4 conference
and are even shorter. At the TREC-5 (which included topics 251-300) and
TREC-6 (which included topics 301-350) conferences, the topics were prepared
with a composition similar to the topics in TREC-3 (i.e., they were expanded
with respect to the topics in TREC-4 which were considered to be too short).

REFERENCE COLLECTIONS 89

<top> T

<num> Number: 168
<title> Topic: Financing AMTRAK

<desc> Description:

A document will address the role of the Federal Government in
financing the operation of the National Railroad Transportation Cor-
poration (AMTRAK).

<narr> Narrative: A relevant document must provide information on
the government’s responsibility to make AMTRAK an economically
viable entity. It could also discuss the privatization of AMTRAK as
an alternative to continuing government subsidies. Documents com-
paring government subsidies given to air and bus transportation with
those provided to AMTRAK would also be relevant.

</top>

Figure 3.8 Topic numbered 168 in the TREC collection.

The Relevant Documents for Each Example Information Request

At the TREC conferences, the set of relevant documents for each example infor-
mation request (topic) is obtained from a pool of possible relevant documents.
This pool is created by taking the top K documents (usually, K = 100) in the
rankings generated by the various participating retrieval systems. The docu-
ments in the pool are then shown to human assessors who ultimately decide on
the relevance of each document.

This technique for assessing relevance is called the pooling method [794]
and is based on two assumptions. First, that the vast majority of the relevant
documents is collected in the assembled pool. Second, that the documents which
are not in the pool can be considered to be not relevant. Both assumptions have
been verified to be accurate in tests done at the TREC conferences. A detailed
description of these relevance assessments can be found in [342, 794].

The (Benchmark) Tasks at the TREC Conferences

The TREC conferences include two main information retrieval tasks [342]. In
the first, called ad hoc task, a set of new (conventional) requests are run against
a fixed document database. This is the situation which normally occurs in a
library where a user is asking new queries against a set of static documents. In
the second. called routing task. a set of fixed requests are run against a database
whose documents are continually changing. This is like a filtering task in which
the same questions are always being asked against a set of dvnamic documents
(for instance. news clipping services). Unlike a pure filtering task, however, the
retrieved documents must be ranked.

90 RETRIEVAL EVALUATION

For the ad hoc task, the participant systems receive the test information
requests and execute them on a pre-specified document collection. For the rout-
ing task, the participant systems receive the test information requests and two
distinct document collections. The first collection is used for training and allows
the tuning of the retrieval algorithm. The second collection is used for testing
the tuned retrieval algorithm.

Starting at the TREC-4 conference, new secondary tasks, besides the ad
hoc and routing tasks, were introduced with the purpose of allowing more specific
comparisons among the various systems. At TREC-6, eight (specific) secondary
tasks were added in as follows.

e Chinese Ad hoc task in which both the documents and the topics are in
Chinese.

o Filtering Routing task in which the retrieval algorithm has only to decide
whether a new incoming document is relevant {in which case it is taken)
or not (in which case it is discarded). No ranking of the documents taken
needs to be provided. The test data (incoming documents) is processed in
time-stamp order.

e Interactive Task in which a human searcher interacts with the retrieval
system to determine the relevant documents. Documents are ruled relevant
or not relevant (i.e., no ranking is provided).

e NLP Task aimed at verifying whether retrieval algorithms based on natu-
ral language processing offer advantages when compared to the more tra-
ditional retrieval algorithms based on index terms.

e Cross languages Ad hoc task in which the documents are in one language
but the topics are in a different language.

e High precision Task in which the user of a retrieval system is asked
to retrieve ten documents that answer a given (and previously unknown)
information request within five minutes (wall clock time).

e Spoken document retrieval Task in which the documents are written
transcripts of radio broadcast news shows. Intended to stimulate research
on retrieval techniques for spoken documents.

e Very large corpus Ad hoc task in which the retrieval systems have to
deal with collections of size 20 gigabytes (7.5 million documents).

For TREC-7, the NLP and the Chinese secondary tasks were discontinued. Addi-
tionally, the routing task was retired as a main task because there is a consensus
that the filtering task is a more realistic type of routing task. TREC-7 also in-
cluded a new task called Query Task in which several distinct query versions were
created for each example information request [794]. The main goal of this task
is to allow investigation of query-dependent retrieval strategies, a well known
problem with the TREC collection due to the sparsity of the given information
requests (which present very little overlap) used in past TREC conferences.

REFERENCE COLLECTIONS 91

Besides providing detailed descriptions of the tasks to be executed, the
TREC conferences also make a clear distinction between two basic techniques
for transforming the information requests (which are in natural language) into
query statements (which might be in vector form, in Boolean form, etc.). In the
TREC-6 conference, the allowable query construction methods were divided into
automatic methods, in which the queries were derived completely automatically
from the test information requests, and manual methods, in which the queries
were derived using any means other than the fully automatic method [794].

Evaluation Measures at the TREC Conferences

At the TREC conferences, four basic types of evaluation measures are used:
summary table statistics, recall-precision averages, document level averages, and
average precision histograms. Briefly, these measures can be described as follows
(see further details on these measures in Section 3.2).

¢ Summary table statistics Consists of a table which summarizes statistics
relative to a given task. The statistics included are: the number of topics
(information requests) used in the task, the number of documents retrieved
over all topics, the number of relevant documents which were effectively
retrieved for all topics, and the number of relevant documents which could
have been retrieved for all topics.

o Recall-precision averages Consists of a table or graph with average
precision (over all topics) at 11 standard recall levels. Since the recall
levels of the individual queries are seldom equal to the standard recall
levels, interpolation is used to define the precision at the standard recall
levels. Further, a non-interpolated average precision over seen relevant
documents (and over all topics) might be included.

e Document level averages In this case, average precision (over all topics)
is computed at specified document cutoff values (instead of standard recall
levels). For instance, the average precision might be computed when 5,
10, 20, 100 relevant documents have been seen. Further, the average R-
precision value (over all queries) might also be provided.

e Average precision histogram Consists of a graph which includes a single
measure for each separate topic. This measure (for a topic ¢;) is given, for
instance, by the difference between the R-precision (for topic t;) for a target
retrieval algorithm and the average R-precision (for topic ;) computed from
the results of all participating retrieval systems.

3.3.2 The CACM and IS Collections

The TREC collection is a large collection which requires time consuming prepa-
ration before experiments can be carried out effectively at a local site. Further,

92 RETRIEVAL EVALUATION

the testing itself is also time consuming and requires much more effort than that
required to execute the testing in a small collection. For groups who are not
interested in making this investment, an alternative approach is to use a smaller
test collection which can be installed and experimented with in a much shorter
time. Further, a small collection might include features which are not present
in the larger TREC collection. For instance, it is well known that the example
information requests at TREC present very little overlap among themselves and
thus are not very useful for investigating the impact of techniques which take
advantage of information derived from dependencies between the current and
past user queries (an issue which received attention at the TREC-7 conference).
Further, the TREC collection does not provide good support for experimenting
with algorithms which combine distinct evidential sources (such as co-citations,
bibliographic coupling, etc.) to generate a ranking. In these situations, alterna-
tive (and smaller) test collections might be more appropriate.

For the experimental studies in [271], five different (small) test collections
were developed: ADI (documents on information science), CACM, INSPEC (ab-
stracts on electronics, computer, and physics), ISI, and Medlars (medical arti-
cles). In this section we cover two of them in detail: the CACM and the ISI test
collections. Our discussion is based on the work by Fox [272].

The CACM Collection

The documents in the CACM test collection consist of all the 3204 articles pub-
lished in the Communications of the ACM from the first issue in 1958 to the
last number of 1979. Those documents cover a considerable range of computer
science literature due to the fact that the CACM served for many years as the
premier periodical in the field.

Besides the text of the documents, the collection also includes information
on structured subfields (called concepts by Fox) as follows:

e author names
¢ date information

e word stems from the title and abstract sections

categories derived from a hierarchical classification scheme

direct references between articles

bibliographic coupling connections

e number of co-citations for each pair of articles.

The subfields ‘author names’ and ‘date information’ provide information on au-
thors and date of publication. The subfield ‘word stems’ provides, for each
document, a list of indexing terms (from the title and abstract sections) which
have been stemmed (i.e., reduced to their grammatical roots as explained in
Chapter 7). The subfield ‘categories’ assigns a list of classification categories
(from the Computing Reviews category scheme) to each document. Since the

REFERENCE COLLECTIONS 93

categories are fairly broad, the number of categories for any given document is
usually smaller than five. The subfield ‘direct references’ provides a list of pairs
of documents [d,,dy] in which each pair identifies a document d, which includes a
direct reference to a document dp. The subfield ‘bibliographic coupling’ provides
a list of triples {d},d2,nciteq) in which the documents di and ds both include a
direct reference to a same third document d; and the factor ncieq counts the
number of documents d; cited by both d; and dy. The subfield ‘co-citations’
provides a list of triples [d),d2.nciting] in which the documents d; and dj are
both cited by a same third document d; and the factor ngting counts the num-
ber of documents d; citing both d; and dy. Thus, the CACM collection provides
a unique environment for testing retrieval algorithms which are based on infor-
mation derived from cross-citing patterns — a topic which has attracted much
attention in the past.

The CACM collection also includes a set of 52 test information requests.
For instance, the information request numbered 1 reads as follows.

What articles exist which deal with TSS (Time Sharing System), an
operating system for IBM computers?

For each information request, the collection also includes two Boolean query
formulations and a set of relevant documents. Since the information requests are
fairly specific, the average number of relevant documents for each information
request is small and around 15. As a result, precision and recall figures tend to
be low.

The ISI Collection

The 1460 documents in the ISI (often referred to as CISI) test collection were
selected from a previous collection assembled by Small [731] at the Institute of
Scientific Information (ISI). The documents selected (which are about informa-
tion sciences) were those most cited in a cross-citation study done by Small. The
main purpose of the ISI collection is to support investigation of similarities based
on terms and on cross-citation patterns.

The documents in the ISI collection include three types of subfields as
follows.

e author names
e word stems from the title and abstract sections

e number of co-citations for each pair of articles.

The meaning of each of these subfields is as in the CACM collection.

The ISI collection includes a total of 35 test information requests (in nat-
ural language) for which there are Boolean query formulations. It also includes
41 additional test information requests for which there is no Boolean query for-
mulation (only the version in natural language). The information requests are

94 RETRIEVAL EVALUATION

fairly general which resulted in a larger number of relevant documents to each
request (around 50). However, many of these relevant documents have no terms
in common with the information requests which implies that precision and recall
figures tend to be low.

Statistics for the CACM and ISI Collections

Tables 3.2 and 3.3 provide comparative summary statistics for the CACM and
the ISI test collections.

Collection Num. Docs Num. Terms Terms/Docs.
CACM 3204 10,446 40.1
ISI 1460 7392 104.9

Table 3.2 Document statistics for the CACM and ISI collections.

Collection Number Terms Relevants Relevants
Queries per Query per Query in Top 10

CACM 52 114 15.3 1.9

ISI 35 & 76 8.1 49.8 1.7

Table 3.3 Query statistics for the CACM and ISI collections.

We notice that, compared to the size of the collection, the ISI collection
has a much higher percentage of relevant documents per query (3.4%) than the
CACM collection (0.5%). However, as already discussed, many of the relevant
documents in the ISI collection have no terms in common with the respective
information requests which usually yields low precision.

Related Test Collections

At the Virginia Polytechnic Institute and State University, Fox has assembled
together nine small test collections in a CD-ROM. These test collections have
sizes comparable to those of the CACM and ISI collections, but include their own
particularities. Since they have been used throughout the years for evaluation
of information retrieval systems, they provide a good setting for the preliminary
testing of information retrieval algorithms. A list of these nine test collections
is provided in Table 3.4.

3.3.3 The Cystic Fibrosis Collection

The cystic fibrosis (CF) collection [721] is composed of 1239 documents indexed
with the term ‘cystic fibrosis’ in the National Library of Medicine’s MEDLINE
database. Each document contains the following fields:

REFERENCE COLLECTIONS 95

Collection Subject Num. Docs Num. Queries
ADI Information Science 82 35
CACM Computer Science 3200 64
ISI Library Science 1460 76
CRAN Aeronautics 1400 225
LISA Library Science 6004 35
MED Medicine 1033 30
NLM Medicine 3078 155
NPL Elec. Engineering 11,429 100
TIME General Articles 423 83

Table 3.4 Test collections related to the CACM and ISI collections.

e MEDLINE accession number
e author

o title

® source

e major subjects

e minor subjects

e abstract (or extract)

e references

e citations.

The collection also includes 100 information requests (generated by an expert
with two decades of clinical and research experience with cystic fibrosis) and
the documents relevant to each query. Further, 4 separate relevance scores are
provided for each relevant document. These relevance scores can be 0 (which
indicates non-relevance), 1 (which indicates marginal relevance), and 2 (which
indicates high relevance). Thus, the overall relevance score for a document (rel-
ative to a given query) varies from 0 to 8. Three of the relevance scores were
provided by subject experts while the fourth relevance score was provided by a
medical bibliographer.

Table 3.5 provides some statistics regarding the information requests in the
CF collection. We notice that the number of queries with at least one relevant
document is close to the total number of queries in the collection. Further,
for various relevance thresholds (the minimum value of relevance score used to
characterize relevance), the average number of relevant documents per query is
between 10 and 30.

The CF collection, despite its small size, has two important characteris-
tics. First, its set of relevance scores was generated directly by human experts
through a careful evaluation strategy. Second, it includes a good number of in-
formation requests (relative to the collection size) and, as a result, the respective
query vectors present overlap among themselves. This allows experimentation

96 RETRIEVAL EVALUATION

Relevance Queries Min. Num. Maz. Num. Avg. Num.
Threshold At Least 1 Rel. Docs Rel. Docs Rel. Docs

Rel. Doc
1 100 2 189 31.9
2 100 1 130 18.1
3 99 1 119 14.9
4 99 1 114 14.1
5 99 1 93 10.7
6 94 1 53 6.4

Table 3.5 Summary statistics for the information requests in the CF collection.

with retrieval strategies which take advantage of past query sessions to improve
retrieval performance.

3.4 Trends and Research Issues

A major trend today is research in interactive user interfaces. The motivation is
a general belief that effective retrieval is highly dependent on obtaining proper
feedback from the user. Thus, evaluation studies of interactive interfaces will
tend to become more common in the near future. The main issues revolve around
deciding which evaluation measures are most appropriate in this scenario. A
typical example is the informativeness measure [754] introduced in 1992.

Furthermore, the proposal, the study, and the characterization of alterna-
tive measures to recall and precision, such as the harmonic mean and the F
measures, continue to be of interest.

3.5 Bibliographic Discussion

A nice chapter on retrieval performance evaluation appeared in the book by
Salton and McGill [698]. Even if outdated, it is still interesting reading. The
book by Khorfage [451] also includes a full chapter on retrieval evaluation. A
recent paper by Mizzaro [569] presents a very complete survey of relevance studies
throughout the years. About 160 papers are discussed in this paper.

Two recent papers by Shaw, Burgin, and Howel [422, 423] discuss standards
and evaluations in test collections for cluster-based and vector-based retrieval
models. These papers also discuss the advantages of the harmonic mean (of
recall and precision) as a single alternative measure for recall and precision.
Problems with recall and precision related to systems which require a weak
document ordering are discussed by Raghavan, Bollmann, and Jung [664, 663].
Tague-Sutcliffe proposes a measure of informativeness for evaluating interactive
user sessions [754].

BIBLIOGRAPHIC DISCUSSION 97

Our discussion of the TREC collection is based on the papers by Har-
man [342] and by Vorhees and Harman {794]. The TREC collection is the most
important reference collection nowadays for evaluation of complex information
requests which execute on a large collection. Our coverage of the CACM and
ISI collections is based on the work by Fox {272]. These collections are small,
require short setup time, and provide a good environment for testing retrieval
algorithms which are based on information derived from cross-citing patterns —
a topic which has attracted much attention in the past [94, 435, 694, 730, 732,
809] and which might flourish again in the context of the Web. The discussion on
the Cystic Fibrosis (CF) collection is based on the work by Shaw, Wood, Wood,
and Tibbo [721]. The CF collection is also small but includes a set of relevance
scores carefully generated by human experts. Furthermore, its example infor-
mation requests present overlap among themselves which allows the testing of
retrieval algorithms that take advantage of past user sessions to improve retrieval
performance.

Chapter 4
Query Languages

with Gonzalo Navarro

4.1 Introduction

We cover in this chapter the different kinds of queries normally posed to text
retrieval systems. This is in part dependent on the retrieval model the system
adopts, i.e., a full-text system will not answer the same kinds of queries as those
answered by a system based on keyword ranking (as Web search engines) or on a
hypertext model. In Chapter 8 we explain how the user queries are solved, while
in this chapter we show which queries can be formulated. The type of query the
user might formulate is largely dependent on the underlying information retrieval
model. The different models for text retrieval systems are covered in Chapter 2.

As in previous chapters. we want to distinguish between information re-
trieval and data retrieval. as we use this dichotomy to classify different query
languages. We have chosen to distinguish first languages that allow the answer
to be ranked, that is, languages for information retrieval. As covered in Chapter
2, for the basic information retrieval models, keyword-based retrieval is the main
type of querying task. For query languages not aimed at information retrieval,
the concept of ranking cannot be easily defined, so we consider them as languages
for data retrieval. Furthermore, some query languages are not intended for final
users and can be viewed as languages that a higher level software package should
use to query an on-line database or a CD-ROM archive. In that case, we talk
about protocols rather than query languages. Depending on the user experience,
a different query langnage will be used. For example, if the user knows exactly
what he wants, the retrieval task is easier and ranking may not even be needed.

An important issue is that most query languages try to use the content
(i.e., the semantics) and the structure of the text (l.e., the text syntax) to
find relevant documents. In that sense. the system may fail to find the relevant
answers (see Chapter 3). For this reason. a number of techniques meant to
enhance the usefulness of the queries exist. Examples include the expansion of
a word to the set of its svnonyms or the use of a thesaurus and stemming to

99

100 QUERY LANGUAGES

put together all the derivatives of the same word. Moreover, some words which
are very frequent and do not carry meaning (such as ‘the’), called stopwords,
may be removed. This subject is covered in Chapter 7. Here we assume that
all the query preprocessing has already been done. Although these operations
are usually done for information retrieval, many of them can also be useful in
a data retrieval context. When we want to emphasize the difference between
words that can be retrieved by a query and those which cannot, we call the
former ‘keywords.’

Orthogonal to the kind of queries that can be asked is the subject of the
retrieval unit the information system adopts. The retrieval unit is the basic ele-
ment which can be retrieved as an answer to a query (normally a set of such basic
elements is retrieved, sometimes ranked by relevance or other criterion). The re-
trieval unit can be a file, a document, a Web page, a paragraph, or some other
structural unit which contains an answer to the search query. From this point
on, we will simply call those retrieval units ‘documents,” although as explained
this can have different meanings (see also Chapter 2).

This chapter is organized as follows. We first show the queries that can be
formulated with keyword-based query languages. They are aimed at information
retrieval, including simple words and phrases as well as Boolean operators which
manipulate sets of documents. In the second section we cover pattern matching,
which includes more complex queries and is generally aimed at complementing
keyword searching with more powerful data retrieval capabilities. Third, we
cover querying on the structure of the text, which is more dependent on the
particular text model. Finally, we finish with some standard protocols used on
the Internet and by CD-ROM publishers.

4.2 Keyword-Based Querying

A query is the formulation of a user information need. In its simplest form, a
query is composed of keywords and the documents containing such keywords are
searched for. Keyword-based queries are popular because they are intuitive, easy
to express, and allow for fast ranking. Thus, a query can be (and in many cases
is) simply a word, although it can in general be a more complex combination of
operations involving several words.

In the rest of this chapter we will refer to single-word and multiple-word
queries as basic queries. Patterns, which are covered in section 4.3, are also
considered as basic queries.

4.2.1 Single-Word Queries

The most elementary query that can be formulated in a text retrieval system is
a word. Text documents are assumed to be essentially long sequences of words.
Although some models present a more general view, virtually all models allow us

KEYWORD-BASED QUERYING 101

to see the text in this perspective and to search words. Some models are also able
to see the internal division of words into letters. These latter models permit the
searching of other types of patterns, which are covered in section 4.3. The set of
words retrieved by these extended queries can then be fed into the word-treating
machinery, say to perform thesaurus expansion or for ranking purposes.

A word is normally defined in a rather simple way. The alphabet is split
into ‘letters’ and ‘separators,” and a word is a sequence of letters surrounded by
separators. More complex models allow us to specify that some characters are
not letters but do not split a word, e.g. the hyphen in ‘on-line.’ It is good
practice to leave the choice of what is a letter and what is a separator to the
manager of the text database.

The division of the text into words is not arbitrary, since words carry a
lot of meaning in natural language. Because of that, many models (such as the
vector model) are completely structured on the concept of words, and words are
the only type of queries allowed (moreover, some systems only allow a small set
of words to be extracted from the documents). The result of word queries is
the set of documents containing at least one of the words of the query. Further,
the resulting documents are ranked according to a degree of similarity to the
query. To support ranking, two common statistics on word occurrences inside
texts are commorly used: ‘term frequency’ which counts the number of times a
word appears inside a document and ‘inverse document frequency’ which counts
the number of documents in which a word appears. See Chapter 2 for more
details.

Additionally, the exact positions where a word appears in the text may be
required for instance, by an interface which highlights each occurrence of that
word.

4.2.2 Context Queries

Many systems complement single-word queries with the ability to search words
in a given context, that is, near other words. Words which appear near each
other may signal a higher likelihood of relevance than if they appear apart. For
instance, we may waut to form phrases of words or find words which are proximal
in the text. Therefore, we distinguish two types of queries:

e Phrase is a sequence of single-word queries. An occurrence of the phrase
is a sequence of words. For instance, it is possible to search for the word
‘enhance,” and then for the word ‘retrieval.’ In phrase queries it is
normally understood that the separators in the text need not be the same
as those in the query (e.g., two spaces versus one space), and uninteresting
words are not considered at all. For instance, the previous example could
match a text such as ‘...enhance the retrieval...’. Although the notion of a
phrase is a very useful feature in most cases, not all systems implement it.

¢ Proximity A more relaxed version of the phrase query is the proximity
query. In this case, a sequence of single words or phrases is given, together

102 QUERY LANGUAGES
AND

VRN

translation OR

/
/

syntax syntactic

Figure 4.1 An example of a query syntax tree. It will retrieve all the documents
which contain the word ‘translation’ as well as either the word ‘syntax’ or the word
‘syntactic’.

with a maximum allowed distance between them. For instance, the above
example could state that the two words should occur within four words, and
therefore a match could be ‘...enhance the power of retrieval....’
This distance can be measured in characters or words depending on the
system. The words and phrases may or may not be required to appear in
the same order as in the query.

Phrases can be ranked in a fashion somewhat analogous to single words
(see Chapters 2 and 5 for details). Proximity queries can be ranked in the same
way if the parameters used by the ranking technique do not depend on physical
proximity. Although it is not clear how to do better ranking, physical proximity
has semantic value. This is because in most cases the proximity means that the
words are in the same paragraph, and hence related in some way.

4.2.3 Boolean Queries

The oldest (and still heavily used) form of combining keyword queries is to use
Boolean operators. A Boolean query has a syntax composed of atoms (i-e.,
basic queries) that retrieve documents, and of Boolean operators which work
on their operands (which are sets of documents) and deliver sets of documents.
Since this scheme is in general compositional (i.e., operators can be composed
over the results of other operators), a query syntaz tree is naturally defined,
where the leaves correspond to the basic queries and the internal nodes to the
operators. The query syntax tree operates on an algebra over sets of documents
(and the final answer of the query is also a set of documents). This is much as,
for instance, the syntax trees of arithmetic expressions where the numbers and
variables are the leaves and the operations form the internal nodes. Figure 4.1
shows an example.

The operators most commonly used, given two basic queries or Boolean

KEYWORD-BASED QUERYING 103

subexpressions e; and eg, are:

e OR The query (e; OR e3) selects all documents which satisfy e; or es.
Duplicates are eliminated.

e AND The query (e; AND e3) selects all documents which satisfy both ey
and es.

e BUT The query (e; BUT e2) selects all documents which satisfy e; but
not es. Notice that classical Boolean logic uses a NOT operation, where
(NOT e3) is valid whenever ey is not. In this case all documents not
satisfying e; should be delivered, which may retrieve a huge amount of
text and is probably not what the user wants. The BUT operator, instead,
restricts the universe of retrievable elements to the result of e;.1

Besides selecting the appropriate documents, the IR system may also sort
the documents by some criterion, highlight the occurrences within the documents
of the words mentioned in the query, and allow feedback by taking the answer
set as a basis to reformulate the query.

With classic Boolean systems, no ranking of the retrieved documents is.
normally provided. A document either satisfies the Boolean query (in which
case it is retrieved) or it does not (in which case it is not retrieved). This is quite
a limitation because it does not allow for partial matching between a document
and a user query. To overcome this limitation, the condition for retrieval must
be relaxed. For instance, a document which partially satisfies an AND condition
might be retrieved.

In fact, it is widely accepted that users not trained in mathematics find
the meaning of Boolean operators difficult to grasp. With this problem in mind,
a ‘fuzzy Boolean’ set of operators has been proposed. The idea is that the
meaning of AND and OR can be relaxed, such that instead of forcing an element
to appear in all the operands (AND) or at least in cne of the operands (OR),
they retrieve elements appearing in some operands (the AND may require it to
appear in more operands than the OR). Moreover, the documents are ranked
higher when they have a larger number of elements in cominon with the query
(see Chapter 2).

4.2.4 Natural Language

Pushing the fuzzy Boolean model even further, the distinction between AND and
OR can be completely blurred, so that a query becomes simply an enumeration
of words and context queries. All the documents matching a portion of the user
query are retrieved. Higher ranking is assigned to those documents matching
more parts of the query. The negation can be handled by letting the user express

t Notice that the same problem arises in the relational calculus, which is shown similar to the
relational algebra only when ‘unsafe’ expressions are avoided. Unsafe expressions are those
that make direct or indirect reference to a universe of elements, as NOT does.

104 QUERY LANGUAGES

that some words are not desired. so that the documents containing them are
penalized in the ranking computation. A threshold may be selected so that the
documents with very low weights are not retrieved. Under this scheme we have
completely eliminated any reference to Boolean operations and entered into the
field of natural language queries. In fact, one can consider that Boolean queries
are a simplified abstraction of natural language queries.

A number of new issues arise once this model is used, especially those
related to the proper way to rank an element with respect to a query. The
search criterion can be re-expressed using a different model, where documents
and queries arc considered just as a vector of ‘term weights’ (with one coordi-
nate per interesting keyvword or even per existing text word) and queries are
considered in exactly the same way (context queries are not considered in this
case). Therefore. the query is now internally converted into a vector of term
weights and the aim is to retrieve all the vectors (documents) which are close to
the query (where closeness has to be defined in the model). This allows many
interesting possibilities. for instance a complete document can be used as a query
(since it is also a vector), which naturally leads to the use of relevance feedback
techniques (i.c.. the user can select a document from the result and submit it as
a new query to retrieve documents similar to the selected one). The algorithms
for this model are totally different from those based on searching patterns (it is
even possible that not every text word needs to be searched but only a small set
of hopefully representative keywords extracted from each document). Natural
language querying is also covered in Chapter 14.

4.3 Pattern Matching

In this section we discuss more specific query formulations (based on the concept
of a pattern) which allow the retrieval of pieces of text that have some property.
These data retrieval queries are useful for linguistics, text statistics, and data
extraction. Their result can be fed into the composition mechanism described
above to form phrases and proximity queries, comprising what we have called
basic queries. Basic queries can be combined using Boolean expressions. In
this sense we can view these data retrieval capabilities as enhanced tools for
information retrieval. However. it is more difficult to rank the result of a pattern
matching expression.

A pattern is a set of syntactic features that must occur in a text seg-
ment. Those segments satisfying the pattern specifications are said to ‘match’
the pattern. We are interested in documents containing segments which match
a given search pattern. Each system allows the specification of some types of
patterns. which range from very simple (for example, words) to rather complex
(such as regular expressions). In general, as more powerful is the set of patterns
allowed. morc involved are the queries that the user can formulate and more
complex is the implementation of the search. The most used types of patterns
are:

PATTERN MATCHING 105

Words A string (sequence of characters) which must be a word in the text
(see section 4.2). This is the most basic pattern.

Prefixes A string which must form the beginning of a text word. For
instance, given the prefix "comput’ all the documents containing words such
as ‘computer, ‘computation,’ ‘computing,’ etc. are retrieved.

Suffixes A string which must form the termination of a text word. For
instance, given the suffix ‘ters’ all the documents containing words such
as ‘computers,’ ‘testers.’ ‘paiuters,’ etc. are retrieved.

Substrings A string which can appear within a text word. For instance,
given the substring "tal’ all the documents containing words such as
‘coastal,” ‘talk,” ‘metallic,” etc. are retrieved. This query can be re-
stricted to find the substrings inside words. or it can go further and scarch
the substring anywhere in the text (in this case the query is not restricted
to be a sequence of letters but can contain word separators). For instance,
a search for ‘any flow’ will match in the phrase ‘.. .many flowers....

Ranges A pair of strings which matches any word lying between them in
lexicographical order. Alphabets are normally sorted, and this induces an
order into the strings which is called lezicographical order (this is indeed the
order in which words in a dictionary are listed). For instance, the range
between words ‘held’ and ‘hold’ will retrieve strings such as ‘hoax’ and
‘hissing.’

Allowing errors A word together with an error threshold. This search
pattern retrieves all text words which are ‘similar’ to the given word. The
concept of similarity can be defined in many ways. The general concept is
that the pattern or the text may have errors (coming from typing. spelling,
or from optical character recognitior software, among others), and the
query should try to retrieve the given word and what are likely to be its
erroneous variants. Although there are many models for similarity among
words, the most generally accepted in text retrieval is the Levenshiein dis-
tance, or simply edit distance. The edit distance between two strizugs is
the minimum number of character insertions, deletions, and replacements
needed to make them equal (see Chapter 6). Therefore, the query specifies
the maximum number of ailowed errors for a word to match the pattern
(i.e., the maximum allowed edit distance). This model can also be extended
to search substrings (not only words), retrieving any text segment which is
at the allowed edit distance from the search pattern. Under this extended
model, if a typing error splits ‘flower’ into ‘flo wer’ it could still be found
with one error, while in the restricted case of words it could not (since nei-
ther ‘£1o0’ nor ‘wer’ are at edit distance 1 fromn ‘flower’). Variations on
this distance model are of use in computational biclogy for searching on
DNA or protein sequences as well as in signal processing.

Regular expressions Some text retrieval systems allow searching for
reqular erpressions. A regular expression is a rather general pattern built

106 QUERY LANGUAGES

up by simple strings (which are meant to be matched as substrings) and
the following operators:

— union: if e; and e, are regular expressions, then (e1|es) matches what
e1 or eo matches.

~ concatenation: if e; and e, are regular expressions, the occurrences
of (e; e2) are formed by the occurrences of e; immediately followed
by those of e, (therefore simple strings can be thought of as a con-
catenation of their individual letters).

— repetition: if € is a regular expression, then (e*) matches a sequence
of zero or more contiguous occurrences of e.

For instance, consider a query like ‘pro (blem | tein) (s | €) (0 | 1 |
2)*" (where ¢ denotes the empty string). It will match words such as
‘problem02’ and ‘proteins.” As in previous cases, the matches can be
restricted to comprise a whole word, to occur inside a word, or to match
an arbitrary text segment. This can also be combined with the previous
type of patterns to search a regular expression allowing errors.

¢ Extended patterns It is normal to use a more user-friendly query lan-
guage to represent some common cases of regular expressions. Extended
patterns are subsets of the regular expressions which are expressed with
a simpler syntax. The retrieval system can internally convert extended
patterns into regular expressions, or search them with specific algorithms.
Each system supports its own set of extended patterns, and therefore no
formal definition exists. Some examples found in many new systems are:

— classes of characters, i.e. one or more positions within the pattern
are matched by any character from a pre-defined set. This involves
features such as case-insensitive matching, use of ranges of characters
(e.g., specifying that some character must be a digit), complements
(e.g., some character must not be a letter), enumeration (e.g., a char-
acter must be a vowel), wild cards (i.e., a position within the pattern
matches with anything), among others.

- conditional expressions, i.e., a part of the pattern may or may not
appear.

— wild characters which match any sequence in the text, e.g. any word
which starts as ‘flo’ and ends with ‘ers,” which matches ‘flowers’
as well as ‘flounders.’

— combinations that allow some parts of the pattern to match exactly
and other parts with errors.

4.4 Structural Queries

Up to now we have considered the text collection as a set of documents which
can be queried with regard to their text content. This model is unable to take
advantage of novel text features which are becoming commonplace, such as the

STRUCTURAL QUERIES 107

@ —— | ®) 9/\\ —~ © /O\
— E / v) ~ I
_Qi \f ,A({JQ ({ \\

Figure 4.2 The three main structures: (a) form-like fixed structure, (b) hypertext
structure, and (c) hierarchical structure.

text structure. The text collections tend to have some structure built into them,
and allowing the user to query those texts based on their structure (and not
only their content) is becoming attractive. The standardization of languages to
represent structured texts such as HTML has pushed forward in this direction
(see Chapter 6).

As discussed in Chapter 2, mixing contents and structure in queries allows
us to pose very powerful queries, which are much more expressive than each query
mechanism by itself. By using a query language that integrates both types of
queries, the retrieval quality of textual databases can be improved.

This mechanism is built on top of the basic queries, so that they select
a set of documents that satisfy certain constraints on their content (expressed
using words, phrases, or patterns that the documents must contain). On top of
this, some structural constraints can be expressed using containment, proximity,
or other restrictions on the structural elements (e.g.. chapters, sections, etc.)
present in the documents. The Boolean queries can be built on top of the
structural queries, so that they combine the sets of documents delivered by
those queries. In the Boolean syntax tree (recall the example of Figure 4.1) the
structural queries form the leaves of the tree. On the other hand, structural
queries can themselves have a complex syntax.

We divide this section according to the type of structures found in text
databases. Figure 4.2 illustrates them. Although structured query languages
should be amenable for ranking, this is still an open problem.

In what follows it is important to distinguish the difference between the
structure that a text may have and what can be queried about that structure.
In general, natural language texts may have any desired structure. However,
different models allow the querying of only some aspects of the real structure.
When we say that the structure allowed is restricted in some way, we mean that
only the aspects which follow this restriction can be queried, albeit the text may
have more structural information. For instance, it is possible that an article has
a nested structure of sections and subsections, but the query model does not
accept recursive structures. In this case we wiil not be able to query for sections
included in others, although this may be the case in the texts documents under
consideration.

108 QUERY LANGUAGES
4.4.1 Fixed Structure

The structure allowed in texts was traditionally quite restrictive. The documents
had a fixed set of fields, 1much like a filled form. Each field had some text inside.
Some fields were not present in all documents. Only rarely could the fields
appear in any order or repeat across a document. A document could not have
text not classified under any field. Fields were not allowed to nest or overlap.
The retrieval activity allowed on them was restricted to specifying that a given
basic pattern was to be found only in a given field. Most current commercial
systems use this model.

This model is reasonable when the text collection has a fixed structure.
For instance, a mail archive could be regarded as a set of mails, where each mail
has a sender. a receiver, a date, a subject, and a body field. The user can thus
search for the mails sent to a given person with ‘football’ in the subject field.
However, the model is inadequate to represent the hierarchical structure present
in an HTML document, for instance.

If the division of the text into fields is rigid enough. the content of some
fields can even be interpreted not as text but as numbers, dates, etc. thereby
allowing different queries to be posed on them (e.g., month ranges in dates). It
is not hard to see that this idea leads naturally to the relational model, each field
corresponding to a colurun in the database table. Looking at the database as a
text allows us to query the textual fields with much more power than is common
in relational database systems. On the other hand, relational databases may
make better use of their knowledge on the data types involved to build specialized
and more efficient indices. A number of approaches towards combining these
trends have been proposed in recent years, their main problem being that they
do not achievé optimal performance because the text is usually stored together
with other types of data. Nevertheless, there are several proposals that extend
SQL (Structured Query Language) to allow full-text retrieval. Among them we
can mention proposals by leading relational database vendors such as Oracle and
Sybase, as well as SFQL, which is covered in section 4.5.

4.4.2 Hypertext

Hypertexts probably represent the maximum freedom with respect to structuring
power. A hypertext is a directed graph where the nodes hold some text and the
links represent connections between nodes or between positions inside the nodes
(see Chapter 2). Hypertexts have received a lot of attention since the explosion
of the Web, which is indeed a gigantic hypertext-like database spread across the
world.

However, retrieval from a hypertext began as a merely navigational activity.
That is, the user had to manually traverse the hypertext nodes following links
to search what he wanted. It was not possible to query the hypertext based on
its structure. Even in the Web one can search by the text contents of the nodes,
but not by their structural connectivity.

STRUCTURAL QUERIES 109

An interesting proposal to combine browsing and searching on the Web is
WebGlimpse. It allows classical navigation plus the ability to search by content
in the neighborhood of the current node. Currently, some query tools have
appeared that achieve the goal of querying hypertexts based on their content
and their structure. This problem is covered in detail in Chapter 13.

4.4.3 Hierarchical Structure

An intermediate structuring model which lies between fixed structure and hy-
pertext is the hierarchical structure. This model represents a recursive decom-
position of the text and is a natural model for many text collections (e.g., books,
articles, legal documents, structured programs, etc.). Figure 4.3 shows an exam-
ple of such a hierarchical structure.

The simplification from hypertext to a hierarchy allows the adoption of
faster algorithms to solve queries. As a general rule, the more powerful the
model, the less efficiently it can be implemented.

Our aim in this section is to analyze and discuss the different approaches
presented by the hierarchical models. We first present a selection of the most
representative models and then discuss the main subjects of this area.

o

4.1 introduction

We cover in this chapter
the different kinds of ...

Structural... ... é%

3 N
3 \
8

g 8

3

g

title *structural”

Figure 4.3 An example of a hierarchical structure: the page of a book, its schematic
view, and a parsed query to retrieve the figure.

110 QUERY LANGUAGES

A Sample of Hierarchical Models

PAT FEzpressions

These are built on the same index as the text index, i.e. there is no special
separate index on the structure. The structure is assumed to be marked in the
text by tags (as in HTML), and therefore is defined in terms of initial and final
tags. This allows a dynamic scheme where the structure of interest is not fixed
but can be determined at query time. For instance, since tags need not to be
especially designed as normal tags, one can define that the end-of-lines are the
marks in order to define a structure on lines. This also allows for a very efficient
implementation and no additional space overhead for the structure.

Each pair of initial and final tags defines a region, which is a set of con-
tiguous text areas. Externally computed regions are also supported. However,
the areas of a region cannot nest or overlap, which is quite restrictive. There is
no restriction on areas of different regions.

Apart from text searching operations, it is possible to select areas contain-
ing (or not) other areas, contained (or not) in other areas, or followed (or not)
by other areas.

A disadvantage is that the algebra mixes regions and sets of text positions
which are incompatible and force complex conversion semantics. For instance, if
the result of a query is going to generate overlapping areas (a fact that cannot
be determined beforehand) then the result is converted to positions. Also, the
dynamic definition of regions is flexible but requires the structure to be express-
able using tags (also called ‘markup’. see Chapter 6), which for instance does
not occur in some structured programming languages.

Overlapped Lists
These can be seen as an evolution of PAT Expressions. The model allows for the
areas of a region to overlap. but not to nest. This elegantly solves the problems of
mixing regions and sets of positions. The model considers the use of an inverted
list (see Chapter 8) where not only the words but also the regions are indexed.
Apart from the operations of PAT Expressions, the model allows us to
perform set union, and to combine regions. Combination means selecting the
minimal text areas which include any two areas taken from two regions. A
followed by” operator imposes the additional restriction that the first area must
be before the second one. An *n words’ operator generates the region of all
(overlapping) sequences of n words of the text (this is further used to retrieve
elements close to each other). If an operation produces a region with nested
areas. only the minimal areas are selected. An example is shown in Figure 2.11.
The implementation of this model can also be very efficient. It is not
clear, however, whether overlapping is good or not for capturing the structural
properties that information has in practice. A new proposal allows the structure
to be nested and overlapped, showing that more interesting operators can still
be implemented.

STRUCTURAL QUERIES 111

Lists of References

These are an attempt to make the definition and querying of structured text uni-
form, using a common language. The language goes beyond querying structured
text, so we restrict our attention to the subset in which we are interested.

The structure of documents is fixed and hierarchical, which makes it im-
possible to have overlapping results. All possible regions are defined at indexing
time. The answers delivered are more restrictive, since nesting is not allowed
(only the top-level elements qualify) and all elements must be of the same type,
e.g. only sections, or only paragraphs. In fact, there are also hypertext links but
these cannot be queried (the model also has navigational features).

A static hierarchical structure makes it possible to speak in terms of direct
ancestry of nodes, a concept difficult to express when the structure is dynamic.
The language allows for querying on ‘path expressions,’” which describe paths in
the structure tree.

Answers to queries are seen as lists of ‘references.” A reference is a pointer
to a region of the database. This integrates in an elegant way answers to queries
and hypertext links, since all are lists of references.

Prozimal Nodes

This model tries to find a good compromise between expressiveness and efliciency.
It does not define a specific language, but a model in which it is shown that a
number of useful operators can be included achieving good efficiency.

The structure is fixed and hierarchical. However. many independent struc-
tures can be defined on the same text, each one being a strict hierarchy but
allowing overlaps between areas of different hierarchies. An example is shown in
Figure 2.12.

A query can relate different hierarchies, but returns a subset of the nodes
of one hierarchy only (i.e., nested elements are allowed in the answers, but no
overlaps). Text matching queries are modeled as returning nodes from a special
‘text hierarchy.’

The model specifies a fully compositional language where the leaves of the
query syntax tree are formed by basic queries on contents or names of structural
elements (e.g., all chapters). The internal nodes combine results. For efficiency,
the operations defined at the internal nodes must be implementable looking at
the identity and text areas of the operands, and must relate nodes which are
close in the text.

It has been shown that many useful operators satisfy this restriction: se-
lecting elements that (directly or transitively) include or are included in others;
that are included at a given position (e.g., the third paragraph of each chapter);
that are shortly before or after others; set manipulation; and many powerful vari-
ations. Operations on content elements deliver a set of regions with no nesting,
and those results can be fully integrated into any query. This ability to integrate
the text into the model is very useful. On the other hand, some queries requiring
non-proximal operations are not allowed, for instance semijoins. An example of
a semijoin is ‘give me the titles of all the chapters referenced in this chapter.’

112 QUERY LANGUAGES

Tree Matching

This model relies on a single primitive: tree inclusion, whose main idea is as
follows. Interpreting the structure both of the text database and of the query
(which is defined as a pattern on the structure) as trees, determine an embed-
ding of the query into the database which respects the hierarchical relationships
between nodes of the query.

Two variants are studied. Ordered inclusion forces the embedding to re-
spect the left-to-right relations among siblings in the query, while unordered
inclusion does not. The leaves of the query can be not only structural elements
but also text patterns, meaning that the ancestor of the leaf must contain that
pattern.

Simple queries return the roots of the matches. The language is enriched
by Prolog-like variables, which can be used to express requirements on equal-
ity between parts of the matched substructure and to retrieve another part of
the match, not only the root. Logical variables are also used for union and
intersection of queries, as well as to emulate tuples and join capabilities.

Although the language is set oriented, the algorithms work by sequentially
obtaining each match. The use of logical variables and unordered inclusion makes
the search problem intractable (NP-hard in many cases). Even the good cases
have an inefficient solution in practice.

Discussion

A survey of the main hierarchical models raises a number of interesting issues,
most of them largely unresolved up to now. Some of them are listed below.

Static or dynamic structure

As seen, in a static structure there are one or more explicit hierarchies {which
can be queried, e.g., by ancestry), while in a dynamic stracture there is not really
a hierarchy, but the required elements are built on the fly. A dynamic structure
is implemented over a normal text index, while a static one may or may not be.
A static structure is independent of the text markup, while a dynamic one is
more flexible for building arbitrary structures.

Restrictions on the structure

The text or the answers may have restrictions about nesting and/or overlapping.
In some cases these restrictions exist for efficiency reasons. In other cases, the
query language is restricted to avoid restricting the structure. This choice is
largely dependent on the needs of each application.

Integration with text

In many structured models, the text content is merely seen as a secondary source
of information which is used only to restrict the matches of structural elements.
In classic IR models, on the other side, information on the structure is the
secondary element which is used only to restrict text matches. For an effective

QUERY PROTOCOLS 113

integration of queries on text content with queries on text structure, the query
language must provide for full expressiveness of both types of queries and for
effective means of combining them.

Query language

Typical queries on structure allow the selection of areas that contain (or not)
other areas, that are contained (or not) in other areas, that follow (or are followed
by) other areas, that are close to other areas, and set manipulation. Many of
them are implemented in most models. although each model has unique features.
Some kind of standardization, expressiveness taxonomy. or formal categorization
would be highly desirable but does not exist yet.

4.5 Query Protocols

In this section we briefly cover some query langiages that are used antomatically
by software applications to query text databases. Some of them are proposed as
standards for querying CD-ROMs or as intermediate languages to query library
systems. Because they are not intended for human use, we refer to them as
protocols rather than languages. More information on protocols can be found in
Chapters 14 and 15. The most important query protocols are:

e 739.50 is a protocol approved as a standard in 1995 by ANSI and NISO.
This protocol is intended to query bibliographical information using a stan-
dard interface between the client and the host database manager which is
independent of the client user interface and of the query database language
at the host. The database is assumed to be a text collection with some fixed
fields (although it is more flexible than usual). The Z39.50 protocol is used
broadly and is part, for instance, of WAIS (see below). The protocol does
not only specify the query language and its semantics, but also the way
in which client and server establish a session, communicate and exchange
information, etc. Although originally conceived only to operate on bib-
liographical information (using the Machine Readable Cataloging Record
(MARC) format), it has been extended to query other types of information
as well.

e WAIS (Wide Area Information Service) is a suite of protocols that was
popular at the beginning of the 1990s before the boom of the Web. The
goal of WAIS was to be a network publishing protocol and to be able to
query databases through the Internet.

In the CD-ROM publishing arena, there are several proposals for query
protocols. The main goal of these protocols is to provide *disk interchangeability.’
This means more flexibility in data communication between primary information
providers and end users. It also enables significant cost savings since it allows
access to diverse information without the need to buy, install, and train users for
different data retrieval applications. We briefly cover three of these proposals:

114 QUERY LANGUAGES

¢ CCL (Common Command Language) is a NISO proposal (Z39.58 or ISO
8777) based on Z39.50. It defines 19 commands that can be used interac-
tively. It is more popular in Europe. although very few products use it. It
is based on the classical Boolean model.

¢ CD-RDx (Compact Disk Read only Data exchange) uses a client-server
architecture and has been implemented in most platforms. The client is
generic while the server is designed and provided by the CD-ROM publisher
who includes it with the database in the CD-ROM. It allows fixed-length
fields, images. and andio, and is supported by such US national agencies
as the CIA. NASA, and GSA.

e SFQL (Structured Full-text Query Language) is based on SQL and also
has a client-server architecture. SFQL has been adopted as a standard by
the aerospace community (the Air Transport Association /Aircraft Industry
Association). Documents are rows in a relational table and can be tagged
using SGML. The language defines the format of the answer, which has a
header and a variable length message area. The language does not define
any specific formatting or markup. For example, a query in SFQL is:

Select abstract from journal.papers where title
contains "text search"

The language supports Boolean and logical operators. thesaurus. proximity
operations, and somne special characters such as wild cards and repetition.
For example:

where paper contains "retrieval" or like "info
%" and date > 1/1/98

Compared with CCL or CD-RDx, SFQL is more general and flexible, al-
though it is based on a relational model, which is not always the best choice
for a document database.

4.6 Trends and Research Issues

We reviewed in this chapter the main aspects of the query languages that retrieve
information from textual databases. Our discussion covered from the most classic
tools to the most novel capabilities that are emerging, from searching words to
extended patterns, from the Boolean model to querying structures. Table 4.1
shows the different basic queries allowed in the different models. Although the
probabilistic and the Bayesian belief network (BBN) models are based on word
queries, they can incorporate set operations.

We present in Figure 4.4 the types of operations we covered and how they
can be structured (not all of them exist in all models and not all of them have
to be used to form a query). The figure shows, for instance, that we can form a
query using Boolean operations over phrases (skipping structural queries), which

TRENDS AND RESEARCH ISSUES 115

Model Queries allowed
Boolean word, set operations
Vector words

Probabilistic words

BBN words

Table 4.1 Relationship between types of queries and models.

can be formed by words and by regular expressions (skipping the ability to allow
€ITOTIS).

Boolean queries
fuzzy Boolean

natural language

structural queries

proximity
phrases
errors pattern
/ / \ matching
/ S~
d " substrings regular expressions
_woras ---. prefixes extended patterns
keywords and context suffixes

Figure 4.4 The types of queries covered and how they are structured.

The area of query languages for text databases is definitely moving towards
higher flexibility. While text models are moving towards the goal of achieving
a better understanding of the user needs (by providing relevance feedback, for
instance), the query languages are allowing more and more power in the specifica-
tion of the query. While extended patterns and searching allowing errors permit
us to find patterns without complete knowledge of what is wanted, querying on
the structure of the text (and not only on its content) provides greater expres-
siveness and increased functionality.

Another important research topic is visual query languages. Visual meta-
phors can help non-experienced users to pose complex Boolean queries. Also, a
visual query language can include the structure of the document. This topic is
related to user interfaces and visualization and is covered in Chapter 10.

116 QUERY LANGUAGES
4.7 Bibliographic Discussion

The material on classical query languages (most simple patterns, Boolean model,
and fixed structure) is based on current commercial systems, such as Fulcrum,
Verity, and others, as well as on non-commercial systems such as Glimpse [540]
and Igrep [26].

The fuzzy Boolean model is described in [703]. The Levenshtein distance
is described in [504] and [25]. Soundex is explained in [445]. A comparison of
the effectiveness of different similarity models is given in [595]. A good source on
regular expressions is [375]. A rich language on extended patterns is described
in [837].

A classical reference on hypertext is [181]. The WebGlimpse system is pre-
sented in [539]. The discussion of hierarchical text is partially based on [41]. The
original proposals are: PAT Expressions [693], Overlapped Lists [173] and the
new improved proposal [206], Lists of References [534], Proximal Nodes [590],
and Tree Matching [439]. PAT Expressions are the basic model of the PAT Text
Searching System [309]. A simple structured text model is presented in [36] and
a visual query language that includes structure is discussed in [44].

More information on Z39.50 can be obtained from [23]. More information
on WAIS is given in [425]. For details on SFQL see [392].

Chapter 5
Query Operations

5.1 Introduction

Without detailed knowledge of the collection make-up and of the retrieval envi-
ronment, most users find it difficult to formulate queries which are well designed
for retrieval purposes. In fact, as observed with Web search engines, the users
might need to spend large amounts of time reformulating their queries to accom-
plish effective retrieval. This difficulty suggests that the first query formulation
should be treated as an initial (naive) attempt to retrieve relevant information.
Following that, the documents initially retrieved could be examined for relevance
and new improved query formulations could then be constructed in the hope of
retrieving additional useful documents. Such query reformulation involves two
basic steps: expanding the original query with new terms and reweighting the
terms in the expanded query.

In this chapter, we examine a variety of approaches for improving the ini-
tial query formulation through query expansion and term reweighting. These
approaches are grouped in three categories: (a) approaches based on feedback
information from the user; (b) approaches based on information derived from
the set of documents initially retrieved (called the local set of documents); and
(c) approaches based on global information derived from the document collec-
tion. In the first category, user relevance feedback methods for the vector and
probabilistic models are discussed. In the second category, two approaches for
local analysis (i.e., analysis based on the set of documents initially retrieved)
are presented. In the third category, two approaches for global analysis are
covered. :

Our discussion is not aimed at completely covering the area, neither does
it intend to present an exhaustive survey of query operations. Instead, our dis-
cussion is based on a selected bibliography which, we believe, is broad enough
to allow an overview of the main issues and tradeoffs involved in query opera-
tions. Local and global analysis are highly dependent on clustering algorithms.
Thus, clustering is covered throughout our discussion. However, there is no in-
tention of providing a complete survey of clustering algorithms for information
retrieval.

117

118 QUERY OPERATIONS
5.2 User Relevance Feedback

Relevance feedback is the most popular query reformulation strategy. In a rele-
vance feedback cycle, the user is presented with a list of the retrieved documents
and, after examining them, marks those which are relevant. In practice, only the
top 10 (or 20) ranked documnents need to be examined. The main idea consists of
selecting important terms, or expressions, attached to the documents that have
been identified as relevant by the user, and of enhancing the importance of these
terms in a new query formulation. The expected effect is that the new query
will be moved towards the relevant documents and away from the non-relevant
ones.

Early experiments using the Smart system [695] and later experiments us-
ing the probabilistic weighting model [677] have shown good improvements in
precision for small test collections when relevance feedback is used. Such im-
provements come from the use of two basic techniques: query expansion (addi-
tion of new terms from relevant documents) and term reweighting (inodification
of term weights based on the user relevance judgement).

Relevance feedback presents the following main advantages over other query
reformulation strategies: (a) it shields the user from the details of the query
reformulation process because all the user has to provide is a relevance judgement
on documents; (b) it breaks down the whole searching task into a sequence of
small steps which are easier to grasp; and (c) it provides a controlled process
designed to emphasize some terms (relevant ones) and de-emphasize others (non-
relevant ones).

In the following three subsections, we discuss the usage of user relevance
feedback to (a) expand queries with the vector model, (b) reweight query terms
with the probabilistic model, and (c) reweight query terms with a variant of the
probabilistic model.

5.2.1 Query Expansion and Term Reweighting for the Vector Model

The application of relevance feedback to the vector model considers that the term-
weight vectors of the documents identified as relevant (to a given query) have
similarities among themselves (i.e., relevant documents resemble each other).
Further, it is assumed that non-relevant documents have term-weight vectors
which are dissimilar from the ones for the relevant documents. The basic idea is
to reformulate the query such that it gets closer to the term-weight vector space
of the relevant documents.

Let us define some additional terminology regarding the processing of a
given query g as follows,

D, set of relevant documents, as identified by the user, among the
retrieved documents;

D,,: set of non-relevant documents among the retrieved documents:
C,: set of relevant documents among all documents in the collection:

USER RELEVANCE FEEDBACK 119

|Dr|y|Dpl, |Cyr|: number of documents in the sets D,, D,, and C,,
respectively;
a, 3,7: tuning constants.

Consider first the unrealistic situation in which the complete set C,. of relevant
documents to a given query ¢ is known in advance. In such a situation, it
can be demonstrated that the best query vector for distinguishing the relevant
documents from the non-relevant documents is given by,

1 - 1 -
Tont = Nl S 4 5.1
Gopt |Cr| 4 J N — ICTl 4 J ()
vd;eC, vd; ¢C

The problem with this formulation is that the relevant documents which compose
the set C, are not known a priori. In fact, we are looking for them. The natural
way to avoid this problem is to formulate an initial query and to incrementally
change the initial query vector. This incremental change is accomplished by
restricting the computation to the documents known to be relevant (according
to the user judgement) at that point. There are three classic and similar ways
to calculate the modified query ¢, as follows,

Standard_Rochio: §n =oaq§ + s Z d, 7 Z d;

\Dy| “ 7 |Da|_:
vd;eD, vd,; €D,
Ide_Regular: ¢, =ad + 8 Z d—; -7 Z ci;
vd,;eD, vd;€Dn
Ide_Dec_Hi : (j’m =« (j‘ + 6 Z d—_; - mamnon-relevani(dj)
vd; €D,

where mazx,on_relevant (J]) is a reference to the highest ranked non-relevant doc-
ument. Notice that now D, and D, stand for the sets of relevant and non-
relevant documents (among the retrieved ones) according to the user judgement,
respectively. In the original formulations, Rochio [678] fixed @ = 1 and Ide [391]
fixed « = 3 = v = 1. The expressions above are modern variants. The current
understanding is that the three techniques yield similar results (in the past, Ide
Dec-Hi was considered slightly better).

The Rochio formulation is basically a direct adaptation of equation 5.1
in which the terms of the original query are added in. The motivation is that
in practice the original query ¢ may contain important information. Usually,
the information contained in the relevant documents is more important than
the information provided by the non-relevant documents [698]. This suggests
making the constant v smaller than the constant 3. An alternative approach is
to set v to 0 which vields a positive feedback strategy.

The main advantages of the above relevance feedback techniques are sim-
plicity and good results. The simplicity is due to the fact that the modified term
weights are computed directly from the set of retrieved documents. The good

120 QUERY OPERATIONS

results are observed experimentally and are due to the fact that the modified
query vector does reflect a portion of the intended query semantics. The main
disadvantage is that no optimality criterion is adopted.

5.2.2 Term Reweighting for the Probabilistic Model

The probabilistic model dynamically ranks documents similar to a query g ac-
cording to the prebabilistic ranking principle. From Chapter 2, we already know
that the similarity of a document d; to a query ¢ can be expressed as

¢
sim(d;, q) a Z Wi g Wi j

i=1

P(k|R) 1 - P(kiR)
(log T PkIR) 8 BkR)) (52

where P(k;|R) stands for the probability of observing the term k; in the set R
of relevant documents and P(k;|R) stands for the probability of observing the
term k; in the set R of non-relevant documents.

Initially, equation 5.2 cannot be used because the probabilities P(k;|R)
and P(k;|R) are unknown. A number of different methods for estimating these
probabilities automatically (i.e., without feedback from the user) were discussed
in Chapter 2. With user feedback information, these probabilities are estimated
in a slightly different way as follows.

For the initial search (when there are no retrieved documents yet), assump-
tions often made include: (a) P(k;|R) is constant for all terms k; (typically 0.5)
and (b) the term probability distribution P(k;|R) can be approximated by the
distribution in the whole collection. These two assumptions yield:

P(k|R) = 05
— n;
P(ki|R) = i

where, as before, n; stands for the number of documents in the collection which
contain the term k;. Substituting into equation 5.2, we obtain

N —n,

t
$iMinatiai(d;, q) = E w;q w;; log
i

ny

For the feedback searches, the accumulated statistics related to the rele-
vance or non-relevance of previously retrieved documents are used to evaluate
the probabilities P(k;|R) and P(k;|R). As before, let D, be the set of relevant
retrieved documents (according to the user judgement) and D, ; be the sub-
set of D, composed of the documents which contain the term k;. Then, the
probabilities P(k;|R) and P(k;|R) can be approximated by

D,, _
P(IR) = 122l P(IR) =

n; — | Dyl
N —|D,|

(5.3)

USER RELEVANCE FEEDBACK 121

Using these approximations, equation 5.2 can rewritten as

Dy i — | Drsl
iq Wi,y | - '
sim(Z Wi,q Wi j Og[w | = {Dyil © N —[Dy| = (n; = [Drsl)

Notice that here, contrary to the procedure in the vector space model, no query
expansion occurs. The same query terms are being reweighted using feedback
information provided by the user.

Formula 5.3 poses problems for certain small values of |D,| and |D; ;| that
frequently arise in practice (|D,| = 1,|D;;| = 0). For this reason, a 0.5 adjust-
ment factor is often added to the estimation of P(k;|R) and P(k:|R) yielding

|Drs| +0.5 — n; — Dyl +0.5

P(ki|R) = P(ki|R) =
|Dy| +1 — D]+ 1

(5.4)

This 0.5 adjustment factor may provide unsatisfactory estimates in some cases,
and alternative adjustments have been proposed such as n;/N or (n; — |D,;|)
/(N —|D,]|) [843]. Taking n;/N as the adjustment factor (instead of 0.5), equa-
tion 5.4 becomes

|Dr1|+_L - ni_.Drit+7Tl\{L
1}z — 4. PR = —F—
PRIB) =5 PRIB="—7p 50

The main advantages of this relevance feedback procedure are that the
feedback process is directly related to the derivation of new weights for query
terms and that the term reweighting is optimal under the assumptions of term
independence and binary document indexing (w;, € {0,1} and w; ; € {0,1}).
The disadvantages include: (1) document term weights are not taken into account
during the feedback loop; (2) weights of terms in the previous query formulations
are also disregarded; and (3) no query expansion is used (the same set of index
terms in the original query is reweighted over and over again). As a result
of these disadvantages, the probabilistic relevance feedback methods do not in
general operate as effectively as the conventional vector modification methods.

To extend the probabilistic model with query expansion capabilities, differ-
ent approaches have been proposed in the literature ranging from term weighting
for query expansion to term clustering techniques based on spanning trees. All
of these approaches treat probabilistic query expansion separately from proba-
bilistic term reweighting. While we do not discuss them here, a brief history of
research on this issue and bibliographical references can be found in section 5.6.

5.2.3 A Variant of Probabilistic Term Reweighting

The discussion above on term reweighting is based on the classic probabilis-
tic model introduced by Robertson and Sparck Jones in 1976. In 1983, Croft
extended this weighting scheme by suggesting distinct initial search methods

122 QUERY OPERATIONS

and by adapting the probabilistic formula to include within-document frequency
weights. This variant of probabilistic term reweighting is more flexible (and also
more powerful) and is briefly reviewed in this section.

The formula 5.2 for probabilistic ranking can be rewritten as

t

sim(d;.q) a E Wi Wi Fijg

=1

where F; ; o is interpreted as a factor which depends on the triple [k;, d;,ql. In
the classic formulation, F; ;4 is computed as a function of P(k;|R) and P(k;|R)
(see equation 5.2). In his variant, Croft proposed that the initial search and the
feedback searches use distinct formulations.

For the initial search, he suggested

Jq = (('+dez) fl,j

T = KR S

where f, , 1s a normalized within-document frequency. The parameters C' and
K should be adjusted according to the collection. For automatically indexed
collections, C should be initially set to 0.

For the feedback searches, Croft suggested the following formulation for
Fija

P(k;|R 1- P(k|R)\ -
Fq,j,q~<0+log (k:i|R) (IR)> g

1=PkiIR) % P(kR)

where P(k;|R) and P(k;|R) are computed as in equation 5.4.

This variant of probabilistic term reweighting has the following advantages:
(1) it takes into account the within-document frequencies; (2) it adopts a nor-
malized version of these frequencies; and (3) it introduces the constants C' and
K which provide for greater flexibility. However, it constitutes a more complex
formulation and, as before, it operates solely on the terms originally in the query
(without query expansion).

5.2.4 Evaluation of Relevance Feedback Strategies

Consider the modified query vector §,, generated by the Rochio formula and as-
sume that we want to evaluate its retrieval performance. A simplistic approach
is to retrieve a set of documents using ¢, to rank them using the vector formula,
and to measure recall-precision figures relative to the set of relevant documents
(provided by the experts) for the original query vector g. In general, the re-
sults show spectacular improvements. Unfortunately, a significant part of this
improvement results from the higher ranks assigned to the set R of documents

AUTOMATIC LOCAL ANALYSIS 123

already identified as relevant during the feedback process [275]. Since the user
has seen these documents already (and pointed them as relevants), such evalua-
tion is unrealistic. Further, it masks any real gains in retrieval performance due
to documents not seen by the user yet.

A more realistic approach is to evaluate the retrieval performance of the
modified query vector ¢, considering only the residual collection i.e., the set
of all documents minus the set of feedback documents provided by the user.
Because highly ranked documents are removed from the collection, the recall-
precision figures for ¢, tend to be lower than the figures for the original query
vector ¢. This is not a limitation because our main purpose is to compare the
performance of distinct relevance feedback strategies (and not to compare the
performance before and after feedback). Thus, as a basic rule of thumb, any
experimentation involving relevance feedback strategies should always evaluate
recall-precision figures relative to the residual collection.

5.3 Automatic Local Analysis

In a user relevance feedback cycle, the user examines the top ranked documents
and separates them into two classes: the relevant ones and the non-relevant
ones. This information is then used to select new terms for query expansion.
The reasoning is that the expanded query will retrieve more relevant documents.
Thus, there is an underlying notion of clustering supporting the feedback strat-
egy. According to this notion, known relevant documnents contain terms which
can be used to describe a larger cluster of relevant documents. In this case, the
description of this larger cluster of relevant documents is built interactively with
assistance from the user.

A distinct approach is to attempt to obtain a description for a larger cluster
of relevant documents automatically. This usually involves identifying terms
which are related to the query terms. Such terms might be synonyms, stemming
variations, or terms which are close to the query terms in the text (i.e., terms
with a distance of at most k words from a query term). Two basic types of
strategies can be attempted: global ones and local ones.

In a global strategy, all documents in the collection are used to determine a
global thesaurus-like structure which defines term relationships. This structure is
then shown to the user who selects terms for query expansion. Global strategies
are discussed in section 5.4.

In a local strategy, the documents retrieved for a given query ¢ are exam-
ined at query time to determine terms for query expansion. This is similar to
a relevance feedback cycle but might be done without assistance from the user
(i.e., the approach might be fully automatic). Two local strategies are discussed
below: local clustering and local context analysis. The first is based on the work
done by Attar and Fraenkel in 1977 and is used here to establish many of the
fundamental ideas and concepts regarding the usage of clustering for query ex-
pansion. The second is a recent work done by Xu and Croft in 1996 and illustrates
the advantages of combining techniques from both local and global analvsis.

124 QUERY OPERATIONS

5.3.1 Query Expansion Through Local Clustering

Adoption of clustering techniques for query expansion is a basic approach which
has been attempted since the early years of information retrieval. The standard
approach is to build global structures such as association matrices which quantify
term correlations (for instance, number of documents in which two given terms
co-occur) and to use correlated terms for query expansion. The main problem
with this strategy is that there is not consistent evidence that global structures
can be used effectively to improve retrieval performance with general collections.
One main reason seems to be that global structures do not adapt well to the local
context defined by the current query. One approach to deal with this effect is
to devise strategies which aim at optimizing the current search. Such strategies
are based on local clustering and are now discussed. Our discussion is based on
the original work by Attar and Fraenkel which appeared in 1977.
We first define basic terminology as follows.

Definition Let V(s) be a non-empty subset of words which are grammatical
variants of each other. A canonical form s of V(s) is called a stem. For instance,
if V(s)={polish,polishing,polished} then s=polish.

For a detailed discussion on stemming algorithms see Chapter 7. While stems
are adopted in our discussion, the ideas below are also valid for non-stemmed
keywords. We proceed with a characterization of the local nature of the strategies
covered here. '

Definition For a given query q, the set D; of documents retrieved is called the
local document set. Further, the set Vi of all distinct words in the local document
set is called the local vocabulary. The set of all distinct stems derived from the
set Vi is referred to as 5.

We operate solely on the documents retrieved for the current query. Since it
is frequently necessary to access the text of such documents, the application of
local strategies to the Web is unlikely at this time. In fact, at a client machine,
retrieving the text of 100 Web documents for local analysis would take too long,
reducing drastically the interactive nature of Web interfaces and the satisfaction
of the users. Further, at the search engine site, analyzing the text of 100 Web
documents would represent an extra spending of CPU time which is not cost
effective at this time (because search engines depend on processing a high number
of queries per unit of time for economic survival). However, local strategies might
be quite useful in the environment of intranets such as, for instance, the collection
of documents issued by a large business company. Further, local strategies might
also be of great assistance for searching information in specialized document
collections (for instance, medical document collections).

Local feedback strategies are based on expanding the query with terms
correlated to the query terms. Such correlated terms are those present in lo-
cal clusters built from the local document set. Thus, before we discuss local

AUTOMATIC LOCAL ANALYSIS 125

query expansion, we discuss strategies for building local clusters. Three types of
clusters are covered: association clusters, metric clusters, and scalar clusters.

Association Clusters

An association cluster is based on the co-occurrence of stems (or terms) inside
documents. The idea is that stems which co-occur frequently inside documents
have a synonymity association. Association clusters are generated as follows.

Definition The frequency of a stem s; in a document d;, d; € Dy, is referred to
as fs,,;. Let m=(m;;) be an association matric with |S;| rows and |D,| columns,
where mij=fs, ;. Let m' be the transpose of M. The matriz §=mm' is a local
stem-stem association matriz. FEach element s, , in § expresses a correlation
Cu,v between the stems s, and s, namely,

Cuw =D foui X favi (5.5)

d; €D,

The correlation factor ¢, , quantifies the absolute frequencies of co-occurrence
and is said to be unnormalized. Thus, if we adopt

Su,v = Cuv (56)

then the association matrix § is said to be unnormalized. An alternative is to
normalize the correlation factor. For instance, if we adopt

C.
Su,v = . (5-7)
Cuu + Cyp — Cup

then the association matrix § is said to be normalized. The adoption of normal-
ization yields quite distinct associations as discussed below.

Given a local association matrix §, we can use it to build local association
clusters as follows.

Definition Consider the u-th row in the association matriz 5 (i.e., the row
with all the associations for the stem s,). Let S,(n) be a function which takes
the u-th row and returns the set of n largest values s, ., where v varies over
the set of local stems and v # u. Then S,(n) defines a local association cluster
around the stem s,. If s, is given by equation 5.6, the association cluster is
said to be unnormalized. If s, , is given by equation 5.7, the association cluster
is satd to be normalized.

Given a query g, we are normally interested in finding clusters only for the |g|
query terms. Further, it is desirable to keep the size of such clusters small. This
means that such clusters can be computed efficiently at query time.

126 QUERY OPERATIONS

Despite the fact that the above clustering procedure adopts stems, it can
equally be applied to non-stemmed keywords. The procedure remains unchanged
except for the usage of keywords instead of stems. Keyword-based local cluster-
ing is equally worthwhile trying because there is controversy over the advantages
of using a stemmed vocabulary, as discussed in Chapter 7

Metric Clusters

Association clusters are based on the frequency of co-occurrence of pairs of terms
in documents and do not take into account where the terms occur in a document.
Since two terms which occur in the same sentence seem more correlated than
two terms which occur far apart in a document, it might be worthwhile to factor
in the distance between two terms in the computation of their correlation factor.
Metric clusters are based on this idea.

Definition Let the distance r(ki, k;) between two keywords k; and k; be given
by the number of words between them in a same document. If k; and k; are
in distinct documents we take r(k;, k;) = oc. A local stem-stem metric correla-
tion matriz § is defined as follows. Each element s, ., of § expresses a metric
correlation ¢, , between the stems s, and s, namely,

- Y Y

ki€V(su) kj EV(QU)

In this expression, as already defined, V(s,) and V(s,) indicate the sets of
keywords which have s, and s, as their respective stems. Variations of the above
expression for ¢, , have been reported in the literature (such as 1/r%(k;, k;)) but
the differences in experimental results are not remarkable.

The correlation factor ¢, , quantifies absolute inverse distances and is said
to be unnormalized. Thus, if we adopt

Sup = Cyw (5.8)

then the association matrix § is said to be unnormalized. An alternative is to
normalize the correlation factor. For instance, if we adopt

CU,U
P T (5-9)

then the association matrix § is said to be normalized.
Given a local metric matrix 8, we can use it to build local metric clusters
as follows.

Definition Consider the u-th row in the metric correlation matriz § (i.e., the
row with all the associations for the stem s,). Let Sy(n) be a function which

AUTOMATIC LGCAL ANALYSIS 127

takes the u-th row and returns the set of n largest values s, ,, where v varies
over the set of local stems and v # u. Then S,(n) defines a local metric cluster
around the stem s,. If s, , is given by equation 5.8, the metric cluster is said to
be unnormalized. If s, . is given by equation 5.9, the metric cluster is said to be
normalized. -

Scalar Clusters

One additional form of deriving a synonymity relationship between two local
stems (or terms) s, and s, is by comparing the sets S, (n) and S,(n). The idea
is that two stems with similar neighborhoods have some synonymity relationship.
In this case we say that the relationship is indirect or induced by the neigh-
borhood. One way of quantifying such neighborhood relationships is to arrange
all correlation values s, ; in a vector §,, to arrange all correlation values s, ;
in another vector §,, and to compare these vectors through a scalar measure.
For instance, the cosine of the angle between the two vectors is a popular scalar
similarity measure.

Definition Let 5, = (84,1,5u,2;,---»Su,n) and 8y = (841,502, -, 8y.n) be two
vectors of correlation values for the stems s, and s,. Further, let § = (s,,.) be
a scalar association matriz. Then, each s, , can be defined as

8y - 5y

= SuS 5.10
Bl < 1501 (5.10)

Su,v

The correlation matrix § is said to be induced by the neighborhood. Using it, a
scalar cluster is then defined as follows.

Definition Let S,(n) be a function which returns the set of n largest values
Suw, U # u, defined according to equation 5.10. Then, S,(n) defines a scalar
cluster around the stem s,,.

Interactive Search Formulation

Stems (or terms) that belong to clusters associated to the query stems (or terms)
can be used to expand the original query. Such stems are called neighbors (of
the query stems) and are characterized as follows.

A stem s, which belongs to a cluster (of size n) associated to another
stem s, (i.e., s, € Sy(n)) is said to be a neighbor of s,. Sometimes, s, is also
called a searchonym of s, but here we opt for using the terminology neighbor.
While neighbor stems are said to have a synonymity relationship, they are not
necessarily synonyms in the grammatical sense. Often, neighbor stems represent
distinct keywords which are though correlated by the current query context. The
local aspect of this correlation is reflected in the fact that the documents and
stems considered in the correlation matrix are all local (i.e., d; € Dy, s, € V).

128 QUERY OPERATIONS

Figure 5.1 Stem s, as a neighbor of the stem s,,.

Figure 5.1 illustrates a stem (or term) s, which is located within a neighborhood
S,(n) associated with the stem (or term) s,. In its broad meaning, neighbor
stems are an important product of the local clustering process since they can
be used for extending a search formulation in a promising unexpected direction,
rather than merely complementing it with missing synonyms.

Consider the problem of expanding a given user query g with neighbor
stems (or terms). One possibility is to expand the query as follows. For each
stemn s, € g, select m neighbor stems from the cluster S,(n) (which might be
of type association, metric, or scalar) and add them to the query. Hopefully,
the additional neighbor stems will retrieve new relevant documents. To cover a
broader neighborhood, the set S, (n) might be composed of stems obtained using
correlation factors (i.e., cy,,) normalized and unnormalized. The qualitative
interpretation is that an unnormalized cluster tends to group stems whose ties
are due to their large frequencies, while a normalized cluster tends to group
stems which are more rare. Thus, the union of the two clusters provides a better
representation of the possible correlations.

Besides the merging of normalized and unnormalized clusters, one can also
use information about correlated stems to improve the search. For instance,
as before, let two stems s, and s, be correlated with a correlation factor Cup-
If ¢y, is larger than a predefined threshold then a neighbor stem of s, can
also be interpreted as a mneighbor stem of s, and vice versa. This provides
greater flexibility, particularly with Boolean queries. To illustrate, consider the
expression (s, + §,) where the + symbol stands for disjunction. Let s, be a
neighbor stem of s,,. Then, one can try both (s, +s,) and (s, +5,+) as synonym
search expressions, because of the correlation given by c,, ,.

AUTOMATIC LOCAL ANALYSIS 129

Experimental results reported in the literature usually support the hypoth-
esis of the usefulness of local clustering methods. Furthermore, metric clusters
seem to perform better than purely association clusters. This strengthens the
hypothesis that there is a correlation between the association of two terms and
the distance between them.

We emphasize that all the qualitative arguments in this section are explic-
itly based on the fact that all the clusters are local (i.e., derived solely from the
documents retrieved for the current query). In a global context, clusters are de-
rived from all the documents in the collection which implies that our qualitative
argumentation might not stand. The main reason is that correlations valid in
the whole corpora might not be valid for the current query.

5.3.2 Query Expansion Through Local Context Analysis

The local clustering techniques discussed above are based on the set of documents
retrieved for the original query and use the top ranked documents for clustering
neighbor terms (or stems). Such a clustering is based on term (stems were
considered above) co-occurrence inside documents. Terms which are the best
neighbors of each query term are then used to expand the original query ¢q. A
distinct approach is to search for term correlations in the whole collection — an
approach called global analysis. Global techniques usually involve the building of
a thesaurus which identifies term relationships in the whole collection. The terms
are treated as concepts and the thesaurus is viewed as a concept relationship
structure. Thesauri are expensive to build but, besides providing support for
query expansion, are useful as a browsing tool as demonstrated by some search
engines in the Web. The building of a thesaurus usually considers the use of small
contexts and phrase structures instead of simply adopting the context provided
by a whole document. Furthermore, with modern variants of global analysis,
terms which are closest to the whole query (and not to individual query terms)
are selected for query expansion. The application of ideas from global analysis
(such as small contexts and phrase structures) to the local set of documents
retrieved is a recent idea which we now discuss.

Local context analysis [838] combines global and local analysis and works
as follows. First, the approach is based on the use of noun groups (i.e., a single
noun, two adjacent nouns, or three adjacent nouns in the text), instead of simple
keywords, as document concepts. For query expansion, concepts are selected
from the top ranked documents {as in local analysis) based on their co-occurrence
with query terms (no stemming). However, instead of documents, passages (i.e.,
a text window of fixed size) are used for determining co-occurrence (as in global
analysis).

More specifically, the local context analysis procedure operates in three
steps.

e First, retrieve the top n ranked passages using the original query. This
is accomplished by breaking up the documents initially retrieved by the

130 QUERY OPERATIONS

query in fixed length passages (for instance, of size 300 words) and ranking
these passages as if they were documents.

e Second, for each concept ¢ in the top ranked passages, the similarity
sim(q, c) between the whole query ¢ (not individual query terms) and the
concept c¢ is computed using a variant of tf-idf ranking.

e Third, the top m ranked concepts (according to sim(g,c)) are added to
the original query q. To each added concept is assigned a weight given by
1 - 0.9 x i/m where i is the position of the concept in the final concept
ranking. The terms in the original query ¢ might be stressed by assigning
a weight equal to 2 to each of them.

Of these three steps, the second one is the most complex and the one which we
now discuss.

The similarity sim{q, c) between each related concept ¢ and the original
query q is computed as follows.

(o e idﬂ))idf‘

logn

sim(g,c) = H

k,‘ €q

where n is the number of top ranked passages considered. The function f(c, k;)
quantifies the correlation between the concept ¢ and the query term k; and is
given by

fle,ki) = pfiy X pfe;
J=1

where pf; ; is the frequency of term k; in the j-th passage and pf.; is the
~ frequency of the concept ¢ in the j-th passage. Notice that this is the stan-
dard correlation measure defined for association clusters (by Equation 5.5) but
adapted for passages. The inverse document frequency factors are computed as

1 N/np;
idf;, = mazx(l, —————Og]05 /np)
1 N/np,

where N is the number of passages in the collection, np; is the number of passages
containing the term k;, and np, is the number of passages containing the concept
c. The factor § is a constant parameter which avoids a value equal to zero
for sim(q,¢) (which is useful, for instance, if the approach is to be used with
probabilistic frameworks such as that provided by belief networks). Usually, 4 is
a small factor with values close to 0.1 (10% of the maximum of 1). Finally, the
idf; factor in the exponent is introduced to emphasize infrequent query terms.
The procedure above for computing sim(g, ¢) is a non-trivial variant of tf-
idf ranking. Furthermore, it has been adjusted for operation with TREC data

AUTOMATIC GLOBAL ANALYSIS 131

and did not work so well with a different collection. Thus, it is important to have
in mind that tuning might be required for operation with a different collection.

We also notice that the correlation measure adopted with local context
analysis is of type association. However, we already know that a correlation
of type metric is expected to be more effective. Thus, it remains to be tested
whether the adoption of a metric correlation factor (for the function flc, ki)
makes any difference with local context analysis.

5.4 Automatic Global Analysis

The methods of local analysis discussed above extract information from the local
set of documents retrieved to expand the query. It is well accepted that such
a procedure yields improved retrieval performance with various collections. An
alternative approach is to expand the query using information from the whole
set of documents in the collection. Strategies based on this idea are called global
analysis procedures. Until the beginning of the 1990s, global analysis was consid-
ered to be a technique which failed to yield consistent improvements in retrieval
performance with general collections. This perception has changed with the
appearance of modern procedures for global analysis. In the following, we dis-
cuss two of these modern variants. Both of them are based on a thesaurus-like
structure built using all the documents in the collection. However, the approach
taken for building the thesaurus and the procedure for selecting terms for query
expansion are quite distinct in the two cases.

5.4.1 Query Expansion based on a Similarity Thesaurus

In this section we discuss a query expansion model based on a global similarity
thesaurus which is constructed automatically [655]. The similarity thesaurus is
based on term to term relationships rather than on a matrix of co-occurrence (as
discussed in section 5.3). The distinction is made clear in the discussion below.
Furthermore, special attention is paid to the selection of terms for expansion
and to the reweighting of these terms. In contrast to previous global analysis
approaches, terms for expansion are selected based on their similarity to the
whole query rather than on their similarities to individual query terms.

A similarity thesaurus is built considering term to term relationships. How-
ever, such relationships are not derived directly from co-occurrence of terms in-
side documents. Rather, they are obtained by considering that the terms are
concepts in a concept space. In this concept space, each term is indexed by the
documents in which it appears. Thus, terms assume the original role of doc-
uments while documents are interpreted as indexing elements. The following
definitions establish the proper framework.

Definition As before (see Chapter 2), let t be the number of terms in the col-
lection, N be the number of documents in the collection, and fi j be the frequency

132 QUERY OPERATIONS

of occurrence of the term k; in the document d;. Further, let t; be the number of
distinct indez terms in the document d; and itf; be the inverse term frequency
for document d;. Then,

t
itf; =log —
ty

analogously to the definition of inverse document frequency.

Within this framework, to each term k; is associated a vector k; given by

—

ki = (w1, wiz....,w;N)

where, as in Chapter 2, w; ; is a weight associated to the index-document pair
[ki,d;]. Here, however, these weights are computed in a rather distinct form as
follows.

0.5 +0.5—L—) itf;
w; ;= (N i ff’) s (5.11)
\/2;31(0.5 + 055202 it 2

where maz;(f; ;) computes the maximum of all factors f; ; for the i-th term
(i.e., over all documents in the collection). We notice that the expression above
is a variant of tf-idf weights but one which considers inverse term frequencies
instead.

The relationship between two terms k, and k, is computed as a correlation
factor ¢, , given by

—

Cup = Ky - k, = Z Wy,j X Wy, j (5.12)
v d

We notice that this is a variation of the correlation measure used for comput-
ing scalar association matrices (defined by Equation 5.5). The main difference
is that the weights are based on interpreting documents as indexing elements
instead of repositories for term co-occurrence. The global similarity thesaurus
is built through the computation of the correlation factor Cu,v for each pair of
indexing terms [ky, k,] in the collection (analogously to the procedure in sec-
tion 5.3). Of course, this is computationally expensive. However, this global
similarity thesaurus has to be computed only once and can be updated incre-
mentally.

Given the global similarity thesaurus, query expansion is done in three
steps as follows.

e First, represent the query in the concept space used for representation of
the index terms.

AUTOMATIC GLOBAL ANALYSIS 133

e Second, based on the global similarity thesaurus, compute a similarity
sim(q, k,) between . each term k, correlated to the query terms and the
whole query gq.

e Third, expand the query with the top r ranked terms according to
sim(q, kv).

For the first step, the query is represented in the concept space of index term
vectors as follows.

Definition To the query q is associated a vector ¢ in the term-concept space
given by

g = E Wy kl
k.~6q

where w; 4 is a weight associated to the indez-query pair [ki,q]. This weight is
computed analogously to the indez-document weight formula in equation 5.11.

For the second step, a similarity sim(g, k,) between each term k, (correlated to
the query terms) and the user query g is computed as

Sim(‘L kv) = (j‘ Ev = Z Wy, q X Cy,v
ky€Q

where c, ., is the correlation factor given in equaticn 5.12. As illustrated in
Figure 5.2, a term might be quite close to the whole query while its distances to
individual query terms are larger. This implies that the terms selected here for
query expansion might be distinct from those selected by previous global analysis
methods (which adopted a similarity to individual query terms for deciding terms
for query expansion).

For the third step, the top r ranked terms accordmg to sim(q, k,) are added
to the original query ¢ to form the expanded query q . To each expansion term
k, in the query q is assigned a weight w,, / given by

_ sim(q, k)

’
v,9
Zkueq wurq

The expanded query q' is then used to retrieve new documents to the user. This
completes the technique for query expansion based on a similarity thesaurus.
Contrary to previous global analysis approaches, this technique has yielded im-
proved retrieval performance (in the range of 20%) with three different collec-
tions.

It is worthwhile making one final observation. Consider a document d;
which is represented in the term-concept space by J; =3 kied; Wi k;. Further,
assume that the original query g is expanded to include all the ¢ index terms

134 QUERY OPERATIONS

O={Ka Ko}

Figure 5.2 The distance of a given term k, to the query centroid Q. might be quite
distinct from the distances of k, to the individual query terms.

(properly weighted) in the collection. Then, the similarity sim(g,d;) between
the document d; and the query ¢ can be computed in the term-concept space by

sim(q,d;) o E E Wy,j X Wy g X Cyp

ky€dj ku€gq

Such an expression is analogous to the formula for query-document similarity
in the generalized vector space model (see Chapter 2). Thus, the generalized
vector space model can be interpreted as a query expansion technique. The
main differences with the term-concept idea are the weight computation and the
fact that only the top r ranked terms are used for query expansion with the
term-concept technique.

5.4.2 Query Expansion based on a Statistical Thesaurus

In this section, we discuss a query expansion technique based on a global statisti-
cal thesaurus [200]. Despite also being a global analysis technique, the approach
is quite distinct from the one described above which is based on a similarity
thesaurus.

The global thesaurus is composed of classes which group correlated terms
in the context of the whole collection. Such correlated terms can then be used
to expand the original user query. To be effective, the terms selected for expan-
sion must have high term discrimination values [699] which implies that they
must be low frequency terms. However, it is difficult to cluster low frequency
terms effectively due to the small amount of information about them (they oc-
cur in few documents). To circumvent this problem, we cluster documents into

AUTOMATIC GLOBAL ANALYSIS 135

classes instead and use the low frequency terms in these documents to define
our thesaurus classes. In. this situation, the document clustering algorithm must
produce small and tight clusters.

A document clustering algorithm which produces small and tight clusters
is the complete link algorithm which works as follows (naive formulation).

(1) Initially, place each document in a distinct cluster.

(2) Compute the similarity between all pairs of clusters.

(3) Determine the pair of clusters [Cy, Cy,] with the highest inter-cluster simi-
larity.

(4) Merge the clusters C, and C,.

(5) Verify a stop criterion. If this criterion is not met then go back to step 2.

(6) Return a hierarchy of clusters.

The similarity between two clusters is defined as the minimum of the similarities
between all pairs of inter-cluster documents (i.e., two documents not in the same
cluster). To compute the similarity between documents in a pair, the cosine
formula of the vector model is used. As a result of this minimality criterion, the
resultant clusters tend to be small and tight.

Consider that the whole document collection has been clustered using the
complete link algorithm. Figure 5.3 illustrates a small portion of the whole
cluster hierarchy in which sim(C,, Cy) = 0.15 and sim(Cy4v,C.) = 0.11 where
Chu+v is a reference to the cluster which results from merging C, and C,. Notice
that the similarities decrease as we move up in the hierarchy because high level
clusters include more documents and thus represent a looser grouping. Thus,
the tightest clusters lie at the bottom of the clustering hierarchy.

Given the document cluster hierarchy for the whole collection, the terms
that compose each class of the global thesaurus are selected as follows.

e Obtain from the user three parameters: threshold class (TC), number of

0.11)

Figure 5.3 Hierarchy of three clusters (inter-cluster similarities indicated in the
ovals) generated by the complete link algorithm.

136 QUERY OPERATIONS

documents in a class (NDC), and minimum inverse document frequency
(MIDF).

¢ Use the parameter TC as a threshold value for determining the document
clusters that will be used to generate thesaurus classes. This threshold has
to be surpassed by stm(C,, C,) if the documents in the clusters C, and C,
are to be selected as sources of terms for a thesaurus class. For instance, in
Figure 5.3. a value of 0.14 for TC returns the thesaurus class C, ., while a
value of 0.10 for TC returns the classes Cyty and Cyyyys.

o Use the parameter NDC as a limit on the size of clusters (number of doc-
uments) to be considered. For instance, if both Cy4, and Cyiyp, are
preselected (through the parameter TC) then the parameter NDC might
be used to decide between the two. A low value of NDC might restrict the
selection to the smaller cluster C,, ..

o Counsider the set of documents in each document cluster preselected above
(through the parameters TC and NDC). Only the lower frequency docu-
ments are used as sources of terms for the thesaurus classes. The parameter
MIDF defines the minimum value of inverse document frequency for any
term which is selected to participate in a thesaurus class. By doing so,
it is possible to ensure that only low frequency terms participate in the
thesaurus classes generated (terms too generic are not good synonyms).

Given that the thesaurus classes have been built, they can be used for query
expansion. For this, an average term weight wto for each thesaurus class C is
computed as follows.

—|C]
S 1 Wy C

Lai=

wte ==

‘ C]
where !C] is the number of terms in the thesaurus class C and w;,c is a pre-
computed weight associated with the term-class pair [k;, C]. This average term
weight can then be used to compute a thesaurus class weight we as

wte
we = —— x 0.5

'

The above weight formulations have been verified through experimentation and
have yielded good results.

Experiments with four test collections (ADI, Medlars, CACM, and ISI; see
Chapter 3 for details on these collections) indicate that global analysis using a
thesaurus built by the complete link algorithm might yield consistent improve-
ments in retrieval performance.

The main problem with this approach is the initialization of the parameters
TC, NDC, and MIDF. The threshold value TC depends on the collection and can
be difficult to set properly. Inspection of the cluster hierarchy is almost always
necessary for assisting with the setting of TC. Care must be exercised because a

TRENDS AND RESEARCH ISSUES 137

high value of TC might yield classes with too few terms while a low value of TC
might vield too few classes. The selection of the parameter NDC can be decided
more easily once TC has been set. However, the setting of the parameter MIDF
might be difficult and also requires careful consideration.

5.5 Trends and Research Issues

The relevance feedback strategies discussed here can be directly applied to the
graphical interfaces of modern information systems. However, since interactivity
is now of greater importance, new techniques for capturing feedback information
from the user are desirable. For instance, there is great interest in graphical
interfaces which display the documents in the answer set as points in a 2D or 3D
space. The motivation is to allow the user to quickly identify {by visual inspec-
tion) relationships among the documents in the answer. In this scenario, a rather
distinct strategy for quantifying feedback information might be required. Thus,
relevance strategies for dealing with visual displays are an important research
problem.

In the past, global analysis was viewed as an approach which did not yield
good improvements in retrieval performance. However. new results obtained
at the beginning of the 1990s changed this perception. Further. the Web has
provided evidence that techniques based on global analysis might be of interest
to the users. For instance, this is the case with the highly popular ‘Yahoo!
software which uses a manually built hierarchy of concepts to assist the user
with forming the query. This suggests that investigating the utilization of global
analysis techniques in the Web is a promising research problem.

Local analysis techniques are interesting because they take advantage of
the local context provided with the query. In this regard, they seem more appro-
priate than global analysis techniques. Furthermore, many positive results have
been reported in the literature. The application of local analysis techniques to
the Web, however, has not been explored and is a promising research direction.
The main challenge is the computational burden imposed on the search engine
site due to the need to process document texts at query time. Thus. a related
research problem of relevance is the development of techniques for speeding up
query processing at the search engine site. In truth, this problem is of inter-
est even if one considers only the normal processing of the queries because the
search engines depend on processing as many queries as possible for economic
survival.

The combination of local analysis, global analysis, visual displays, and in-
teractive interfaces is also a current and important research problem. Allowing
the user to visually explore the document space and providing him with clues
which assist with the query formulation process are highly relevant issues. Pos-
itive results in this area might become a turning point regarding the design of
user interfaces and are likely to attract wide attention.

138 QUERY OPERATIONS
5.6 Bibliographic Discussion

Query expansion methods have been studied for a long time. While the success
of expansion methods throughout the years has been debatable, more recently
researchers have reached the consensus that query expansion is a useful and little
explored (commercially) technique. Useful because its modern variants can be
used to consistently improve the retrieval performance with general collections.
Little explored because few commercial systems (and Web search engines) take
advantage of it.

Early work suggesting the expansion of a user query with closely related
terms was done by Maron and Kuhns in 1960 [547]. The classic technique for
combining query expansion with term reweighting in the vector model was stud-
ied by Rocchio in 1965 (using the Smart system [695] as a testbed) and published
later on [678]. Ide continued the studies of Rocchio and proposed variations to
the term reweighting formula [391].

The probabilistic model was introduced by Robertson and Sparck Jones
[677] in 1976. A thorough and entertaining discussion of this model can be found
in the book by van Rijsbergen [785]. Croft and Harper [199] suggested that the
initial search should use a distinct computation. In 1983, Croft [198] proposed
to extend the probabilistic formula to include within-document frequencies and
introduced the C and K parameters.

Since the probabilistic model does not provide means of expanding the
query, query expansion has to be done separately. In 1978, Harper and van
Rijsbergen [345] used a term-term clustering technique based on a maximum
spanning tree to select terms for probabilistic query expansion. Two years later,
they also introduced a new relevance weighting scheme, called EMIM [344], to be
used with their query expansion technique. In 1981, Wu and Salton [835] used
relevance feedback to reweight terms (using a probabilistic formula) extracted
from relevant documents and used these terms to expand the query. Empirical
results showed improvements in retrieval performance.

Our discussion on user relevance feedback for the vector and probabilistic
models in section 5.2 is based on four sources: a nice paper by Salton and Buck-
ley [696], the book by van Rijsbergen [785], the book by Salton and McGill (698],
and two book chapters by Harman [340, 339].

Regarding automatic query expansion, Lesk [500] tried variations of term-
term clustering in the Smart system without positive results. Following that,
Sparck Jones and Barber [413] and Minker, Wilson and Zimmerman [562] also
observed no improvements with query expansion based on term-term global clus-
tering. These early research results left the impression that query expansion
based on global analysis is not an effective technique. However, more recent
results show that this is not the case. In fact, the research results obtained by
Vorhees [793], by Crouch and Yang [200], and by Qiu and Frei [655] indicate
that query expansion based on global analysis can consistently yield improved
retrieval performance.

Our discussion on query expansion through local clustering is based on
early work by Attar and Fraenkel [35] from 1977. The idea of local context

BIBLIOGRAPHIC DISCUSSION 139

analysis is much more recent and was introduced by Xu and Croft [838] in 1996.
The discussion on query expansion using a global similarity thesaurus is based
on the work by Qiu and Frei [655]. Finally, the discussion on query expansion
using a global statistical thesaurus is based on the work of Crouch and Yang [200]
which is influenced by the term discrimination value theory introduced by Salton,
Yang, and Yu [699] early in 1975.

Since query expansion frequently is based on some form of clustering, our
discussion covered a few clustering algorithms. However, our aim was not to
provide a thorough review of clustering algorithms for information retrieval. Such
a review can be found in the work of Rasmussen [663].

Chapter 6

Text and Multimedia Languages
and Properties

6.1 Introduction

Text is the main form of communicating knowledge. Starting with Lieroglyphs,
the first written surfaces (stone. wood, animal skin. papyrus, and rice paper).
and paper, text has been created everywhere, in many forms and languages. We
use the term document to dencte a single unit of information. typically text in
a digital form, but it can also include other media. In practice. a document is
loosely defined. Tt can be a complete logical unit. like a research article. a book or
a manual. [t can also be part of a larger text. such as a paragraph or a sequence
of paragraphs (also called a passage of text). an entry in a dictionary, a judge’s
opinion on a case, the description of an automobile part. etc. Furthermore. with
respect to its physical representation, a document can be any physical unit, for
example a file. an email. or a World Wide Web (or just Web) page.

A document has a given syntax and structure which is usually dictated by
the application or by the person who created it. It also has a semantics, specified
by the author of the document (who 1s not necessarily the same as the creator)
Additionally, a document may have a presentation style associated with it, which
specifies how it should be displayed or printed. Such a style is usually given by
the document syntax and structure and is related tc a specific application (for
example. a Web browser). Figure 6.1 depicts all these relations. A document can
also have information about itself. called metadata. The next section explains
different types of metadata and their relevance.

The syntaz of a document can express structure. presentation style, seman-
tics, or even external actions. In many cases one or more of these elements are
implicit or are given together. For example, a structural element (e.g., a section)
can have a fixed formatting style. The semantics of a docuent is also associated
with its use. For example, Postscript directives are designed for drawing.

The syntax of a document can be implicit in its content, or expressed in a
simple declarative language or even in a programming language. For example,
many editor formats are declarative while a TeX document uses a powerful type-
setting language. Although a powerful language could be easier to parse than
the data itself, it might be difficult to convert documents in that language to
other formats. Many syntax languages are proprietary and specific, but open

141

142 TEXT AND MULTIMEDIA LANGUAGES AND PROPERTIES

Document
/ Presentation Style
Syntax — pmi Text + Structure +
S~
Other Media \
Semantics

Figure 6.1 Characteristics of a document.

and generic languages are better because documents can be interchanged be-
tween applications and are more flexible. Text can also be written in natural
language. However, at present the semantics of natural language is still not easy
for a computer to understand. The current trend is to use languages which pro-
vide information on the document structure, format, and semantics while being
readable by humans as well as computers. The Standard Generalized Markup
Language (SGML), which is covered later on in this chapter, tries to balance all
the issues above. Metadata, markup, and semantic encoding represent different
levels of formalization of the document contents.

Most documents have a particular formatting style. However, new appli-
cations are pushing for external formatting such that information can be rep-
resented independently of style, and vice versa. The presentation style can be
embedded in the document, as in TeX or Rich Text Format (RTF). Style can
be complemented by macros (for example, LaTeX in the case of TeX). In most
cases, style is defined by the document author. However, the reader may decide
part of the style (for example, by setting options in a Web browser). The style
of a document defines how the document is visualized in a computer window or
a printed page, but can also include treatment of other media such as audio or
video.

In this chapter we first cover metadata. Following that we discuss text
characteristics such as formats and natural language statistics. Next we cover
languages to describe text structure, presentation style, or semantics. The last
part is devoted to multimedia formats and languages.

6.2 Metadata

Most documents and text collections have associated with them what is known as
metadata. Metadata is information on the organization of the data, the various
data domains, and the relationship between them. In short, metadata is ‘data
about the data.” For instance, in a database management system, the schema

